linear-1.16.2: Linear Algebra

Linear.V1

Description

1-D Vectors

Synopsis

# Documentation

newtype V1 a Source

A 1-dimensional vector

````>>> ````pure 1 :: V1 Int
```V1 1
```
````>>> ````V1 2 + V1 3
```V1 5
```
````>>> ````V1 2 * V1 3
```V1 6
```
````>>> ````sum (V1 2)
```2
```

Constructors

 V1 a

Instances

 Monad V1 Functor V1 MonadFix V1 Applicative V1 Foldable V1 Traversable V1 Generic1 V1 Distributive V1 Representable V1 MonadZip V1 Traversable1 V1 Foldable1 V1 Apply V1 Bind V1 Additive V1 Metric V1 R1 V1 Trace V1 Affine V1 Unbox a => Vector Vector (V1 a) Unbox a => MVector MVector (V1 a) Num r => Coalgebra r (E V1) Num r => Algebra r (E V1) Bounded a => Bounded (V1 a) Eq a => Eq (V1 a) Fractional a => Fractional (V1 a) Data a => Data (V1 a) Num a => Num (V1 a) Ord a => Ord (V1 a) Read a => Read (V1 a) Show a => Show (V1 a) Ix a => Ix (V1 a) Generic (V1 a) Storable a => Storable (V1 a) NFData a => NFData (V1 a) Hashable a => Hashable (V1 a) Unbox a => Unbox (V1 a) Ixed (V1 a) Epsilon a => Epsilon (V1 a) FunctorWithIndex (E V1) V1 FoldableWithIndex (E V1) V1 TraversableWithIndex (E V1) V1 Each (V1 a) (V1 b) a b Typeable (* -> *) V1 type Rep1 V1 type Rep V1 = E V1 type Diff V1 = V1 data MVector s (V1 a) = MV_V1 (MVector s a) type Rep (V1 a) data Vector (V1 a) = V_V1 (Vector a) type Index (V1 a) = E V1 type IxValue (V1 a) = a

class R1 t where Source

A space that has at least 1 basis vector `_x`.

Minimal complete definition

Nothing

Methods

_x :: Lens' (t a) a Source

````>>> ````V1 2 ^._x
```2
```
````>>> ````V1 2 & _x .~ 3
```V1 3
```

Instances

 R1 Identity R1 V1 R1 V2 R1 V3 R1 V4 R1 f => R1 (Point f)

ex :: R1 t => E t Source