| Copyright | 2014 Edward Kmett Charles Durham 2015 Trevor L. McDonell |
|---|---|
| License | BSD-style (see the file LICENSE) |
| Maintainer | Edward Kmett <ekmett@gmail.com> |
| Stability | experimental |
| Portability | non-portable |
| Safe Haskell | None |
| Language | Haskell98 |
Data.Array.Accelerate.Linear.Metric
Description
Free metric spaces
Documentation
class Metric f => Metric f where Source #
Free and sparse inner product/metric spaces.
Methods
dot :: forall a. (Num a, Box f a) => Exp (f a) -> Exp (f a) -> Exp a Source #
Compute the inner product of two vectors or (equivalently) convert a
vector f a into a covector f a -> a.
>>>V2 1 2 `dot` V2 3 411
quadrance :: forall a. (Num a, Box f a) => Exp (f a) -> Exp a Source #
Compute the squared norm. The name quadrance arises from Norman J. Wildberger's rational trigonometry.
qd :: forall a. (Num a, Box f a) => Exp (f a) -> Exp (f a) -> Exp a Source #
Compute the quadrance of the difference
distance :: forall a. (Floating a, Box f a) => Exp (f a) -> Exp (f a) -> Exp a Source #
Compute the distance between two vectors in a metric space
norm :: forall a. (Floating a, Box f a) => Exp (f a) -> Exp a Source #
Compute the norm of a vector in a metric space
signorm :: forall a. (Floating a, Box f a) => Exp (f a) -> Exp (f a) Source #
Convert a non-zero vector to unit vector.