```-------------------------------------------------------------------------
-- |
-- Copyright   : (c) Dan Doel
--
-- Maintainer  : dan.doel@gmail.com
-- Stability   : experimental
-- Portability : non-portable (multi-parameter type classes)
--
-- A backtracking, logic programming monad.
--
--    /Backtracking, Interleaving, and Terminating
--    Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, Amr Sabry
--    (<http://okmij.org/ftp/papers/LogicT.pdf>)
-------------------------------------------------------------------------

{-# LANGUAGE CPP  #-}

{-# LANGUAGE Safe #-}
#endif

-------------------------------------------------------------------------------
-- | Minimal implementation: msplit
-- | Attempts to split the computation, giving access to the first
--   result. Satisfies the following laws:
--
--   > msplit mzero                == return Nothing
--   > msplit (return a `mplus` m) == return (Just (a, m))
msplit     :: m a -> m (Maybe (a, m a))

-- | Fair disjunction. It is possible for a logical computation
--   to have an infinite number of potential results, for instance:
--
--   > odds = return 1 `mplus` liftM (2+) odds
--
--   Such computations can cause problems in some circumstances. Consider:
--
--   > do x <- odds `mplus` return 2
--   >    if even x then return x else mzero
--
--   Such a computation may never consider the 'return 2', and will
--   therefore never terminate. By contrast, interleave ensures fair
--   consideration of both branches of a disjunction
interleave :: m a -> m a -> m a

-- | Fair conjunction. Similarly to the previous function, consider
--   the distributivity law for MonadPlus:
--
--   > (mplus a b) >>= k = (a >>= k) `mplus` (b >>= k)
--
--   If 'a >>= k' can backtrack arbitrarily many tmes, (b >>= k) may never
--   be considered. (>>-) takes similar care to consider both branches of
--   a disjunctive computation.
(>>-)      :: m a -> (a -> m b) -> m b
infixl 1 >>-

-- | Logical conditional. The equivalent of Prolog's soft-cut. If its
--   first argument succeeds at all, then the results will be fed into
--   the success branch. Otherwise, the failure branch is taken.
--   satisfies the following laws:
--
--   > ifte (return a) th el           == th a
--   > ifte mzero th el                == el
--   > ifte (return a `mplus` m) th el == th a `mplus` (m >>= th)
ifte       :: m a -> (a -> m b) -> m b -> m b

-- | Pruning. Selects one result out of many. Useful for when multiple
--   results of a computation will be equivalent, or should be treated as
--   such.
once       :: m a -> m a

-- | Inverts a logic computation. If @m@ succeeds with at least one value,
-- @lnot m@ fails. If @m@ fails, then @lnot m@ succeeds the value @()@.
lnot :: m a -> m ()

-- All the class functions besides msplit can be derived from msplit, if
-- desired
interleave m1 m2 = msplit m1 >>=
maybe m2 (\(a, m1') -> return a `mplus` interleave m2 m1')

m >>- f = do (a, m') <- maybe mzero return =<< msplit m
interleave (f a) (m' >>- f)

ifte t th el = msplit t >>= maybe el (\(a,m) -> th a `mplus` (m >>= th))

once m = do (a, _) <- maybe mzero return =<< msplit m
return a

lnot m = ifte (once m) (const mzero) (return ())

-------------------------------------------------------------------------------
-- | The inverse of msplit. Satisfies the following law:
--
-- > msplit m >>= reflect == m
reflect :: MonadLogic m => Maybe (a, m a) -> m a
reflect Nothing = mzero
reflect (Just (a, m)) = return a `mplus` m

-- An instance of MonadLogic for lists
msplit []     = return Nothing
msplit (x:xs) = return \$ Just (x, xs)

-- | Note that splitting a transformer does
-- not allow you to provide different input
-- to the monadic object returned.
-- For instance, in:
--
-- > let Just (_, rm') = runReaderT (msplit rm) r in runReaderT rm' r'
--
-- @r'@ will be ignored, because @r@ was already threaded through the
-- computation.
msplit rm = ReaderT \$ \e -> do r <- msplit \$ runReaderT rm e
case r of
Nothing -> return Nothing
Just (a, m) -> return (Just (a, lift m))

-- | See note on splitting above.
msplit sm = StrictST.StateT \$ \s ->
do r <- msplit (StrictST.runStateT sm s)
case r of
Nothing          -> return (Nothing, s)
Just ((a,s'), m) ->
return (Just (a, StrictST.StateT (\_ -> m)), s')

interleave ma mb = StrictST.StateT \$ \s ->
StrictST.runStateT ma s `interleave` StrictST.runStateT mb s

ma >>- f = StrictST.StateT \$ \s ->
StrictST.runStateT ma s >>- \(a,s') -> StrictST.runStateT (f a) s'

ifte t th el = StrictST.StateT \$ \s -> ifte (StrictST.runStateT t s)
(\(a,s') -> StrictST.runStateT (th a) s')
(StrictST.runStateT el s)

once ma = StrictST.StateT \$ \s -> once (StrictST.runStateT ma s)

-- | See note on splitting above.
msplit sm = LazyST.StateT \$ \s ->
do r <- msplit (LazyST.runStateT sm s)
case r of
Nothing -> return (Nothing, s)
Just ((a,s'), m) ->
return (Just (a, LazyST.StateT (\_ -> m)), s')

interleave ma mb = LazyST.StateT \$ \s ->
LazyST.runStateT ma s `interleave` LazyST.runStateT mb s

ma >>- f = LazyST.StateT \$ \s ->
LazyST.runStateT ma s >>- \(a,s') -> LazyST.runStateT (f a) s'

ifte t th el = LazyST.StateT \$ \s -> ifte (LazyST.runStateT t s)
(\(a,s') -> LazyST.runStateT (th a) s')
(LazyST.runStateT el s)

once ma = LazyST.StateT \$ \s -> once (LazyST.runStateT ma s)
```