| Copyright | (c) Eric Crockett 2011-2017 Chris Peikert 2011-2017 |
|---|---|
| License | GPL-2 |
| Maintainer | ecrockett0@email.com |
| Stability | experimental |
| Portability | POSIX \( \def\Z{\mathbb{Z}} \) \( \def\R{\mathbb{R}} \) |
| Safe Haskell | None |
| Language | Haskell2010 |
Crypto.Lol.Types.Unsafe.RRq
Description
An implementation of the additive quotient group \(\R/(q\Z)\).
This module is "unsafe" because it exports the RRq constructor.
This module should only be used to make tensor-specific instances for RRq.
The safe way to use this type is to import Crypto.Lol.Types.
Documentation
The ring \(\R/(q\Z)\) of reals modulo q, using
underlying floating type r.
Constructors
| RRq' r |
Instances
| (Reflects k q r, RealField r, Additive (RRq k q r)) => Reduce r (RRq k q r) Source # | |
| (Protoable (IZipVector m (RRq k q Double)), (~) * (ProtoType (IZipVector m (RRq k q Double))) KqProduct, Protoable (IZipVector m b), (~) * (ProtoType (IZipVector m b)) KqProduct) => Protoable (IZipVector m (RRq k q Double, b)) Source # | |
| (Fact m, Reflects k q Double) => Protoable (IZipVector m (RRq k q Double)) Source # | |
| Eq r => Eq (RRq k q r) Source # | |
| Ord r => Ord (RRq k q r) Source # | |
| Show r => Show (RRq k q r) Source # | |
| NFData r => NFData (RRq k q r) Source # | |
| C r => C (RRq k q r) Source # | |
| (Reflects k q r, RealField r, Ord r) => C (RRq k q r) Source # | |
| (Reflects k q r, Reduce r (RRq k q r), Ord r, Ring r) => Lift' (RRq k q r) Source # | |
| (ToInteger i, RealField r, Reflects k q i, Reflects k q r) => Subgroup (ZqBasic k q i) (RRq k q r) Source # | |
| type ProtoType (IZipVector m (RRq k q Double, b)) Source # | |
| type ProtoType (IZipVector m (RRq k q Double)) Source # | |
| type LiftOf (RRq k q r) Source # | |