Safe Haskell | None |
---|---|
Language | Haskell2010 |
Evaluation of expressions.
Stack-based languages allow convenient expressions evaluation, for that
we just need binary instructions in infix notation, not in Polish postfix
notation that add
and other primitives provide. Compare:
push 1; push 2; push 3; push 4; mul; rsub; add
vs
push 1 |+| push 2 |-| push 3 |*| push 4
In these expressions each atom is some instruction providing a single value on top of the stack, for example:
nthOdd :: Lambda Natural Natural
nthOdd = take |*| push Natural 2 |+| push
Natural 1
For binary operations we provide the respective operators. Unary operations can
be lifted with unaryExpr
:
implication :: [Bool, Bool] :-> '[Bool] implication = unaryExpr not take |.|.| take
or with its alias in form of an operator:
implication :: [Bool, Bool] :-> '[Bool] implication = not $: take |.|.| take
Stack changes are propagated from left to right. If an atom consumes an element at the top of the stack, the next atom will accept only the remainder of the stack.
In most cases you should prefer providing named variables to the formulas in order to avoid messing up with the arguments:
f :: ("a" :! Natural) : ("b" :! Natural) : ("c" :! Natural) : s :-> Integer : s f = fromNamed #a |+| fromNamed #b |-| fromNamed #c
Instead of putting all the elements on the stack upon applying the formula, you may find it more convenient to evaluate most of the arguments right within the formula:
withinRange :: Natural : a : b : c : ("config" :! Config) : s :-> Bool : a : b : c : ("config" :! Config) : s withinRange = dup |>=| do{ dupL #config; toField #minBound } |&| take |<=| do{ dupL #config; toField #maxBound }
Synopsis
- type Expr inp out res = inp :-> (res ': out)
- take :: Expr (a ': s) s a
- unaryExpr :: (forall s. (a ': s) :-> (r ': s)) -> Expr s0 s1 a -> Expr s0 s1 r
- ($:) :: (forall s. (a ': s) :-> (r ': s)) -> Expr s0 s1 a -> Expr s0 s1 r
- binaryExpr :: (forall s. (a ': (b ': s)) :-> (r ': s)) -> Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r
- (|+|) :: ArithOpHs Add a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r
- (|-|) :: ArithOpHs Sub a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r
- (|*|) :: ArithOpHs Mul a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r
- (|==|) :: NiceComparable a => Expr s0 s1 a -> Expr s1 s2 a -> Expr s0 s2 Bool
- (|/=|) :: NiceComparable a => Expr s0 s1 a -> Expr s1 s2 a -> Expr s0 s2 Bool
- (|<|) :: NiceComparable a => Expr s0 s1 a -> Expr s1 s2 a -> Expr s0 s2 Bool
- (|>|) :: NiceComparable a => Expr s0 s1 a -> Expr s1 s2 a -> Expr s0 s2 Bool
- (|<=|) :: NiceComparable a => Expr s0 s1 a -> Expr s1 s2 a -> Expr s0 s2 Bool
- (|>=|) :: NiceComparable a => Expr s0 s1 a -> Expr s1 s2 a -> Expr s0 s2 Bool
- (|&|) :: ArithOpHs And a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r
- (|||) :: ArithOpHs Or a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r
- (|.|.|) :: ArithOpHs Or a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r
- (|^|) :: ArithOpHs Xor a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r
- (|<<|) :: ArithOpHs Lsl a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r
- (|>>|) :: ArithOpHs Lsr a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r
- (|:|) :: Expr s0 s1 a -> Expr s1 s2 [a] -> Expr s0 s2 [a]
- pairE :: (Expr s0 s1 a, Expr s1 s2 b) -> Expr s0 s2 (a, b)
- (|@|) :: Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 (a, b)
- listE :: KnownValue a => [Expr s s a] -> Expr s s [a]
- transferTokensE :: NiceParameter p => ("arg" :! Expr s0 s1 p) -> ("amount" :! Expr s1 s2 Mutez) -> ("contract" :! Expr s2 s3 (ContractRef p)) -> Expr s0 s3 Operation
Documentation
type Expr inp out res = inp :-> (res ': out) Source #
Expression is just an instruction accepting stack inp
and producing
stack out
with evaluation result res
at the top.
take :: Expr (a ': s) s a Source #
Consume an element at the top of stack. This is just an alias for nop
.
unaryExpr :: (forall s. (a ': s) :-> (r ': s)) -> Expr s0 s1 a -> Expr s0 s1 r Source #
Lift an instruction to an unary operation on expressions.
($:) :: (forall s. (a ': s) :-> (r ': s)) -> Expr s0 s1 a -> Expr s0 s1 r infixr 9 Source #
An alias for unaryExpr
.
binaryExpr :: (forall s. (a ': (b ': s)) :-> (r ': s)) -> Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r Source #
Lift an instruction to a binary operation on expressions.
(|+|) :: ArithOpHs Add a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r infixl 6 Source #
Expressions addition.
(|-|) :: ArithOpHs Sub a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r infixl 6 Source #
Expressions subtraction.
(|*|) :: ArithOpHs Mul a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r infixl 7 Source #
Expressions multiplication.
(|==|) :: NiceComparable a => Expr s0 s1 a -> Expr s1 s2 a -> Expr s0 s2 Bool infix 4 Source #
Expressions comparison.
(|/=|) :: NiceComparable a => Expr s0 s1 a -> Expr s1 s2 a -> Expr s0 s2 Bool infix 4 Source #
Expressions comparison.
(|<|) :: NiceComparable a => Expr s0 s1 a -> Expr s1 s2 a -> Expr s0 s2 Bool infix 4 Source #
Expressions comparison.
(|>|) :: NiceComparable a => Expr s0 s1 a -> Expr s1 s2 a -> Expr s0 s2 Bool infix 4 Source #
Expressions comparison.
(|<=|) :: NiceComparable a => Expr s0 s1 a -> Expr s1 s2 a -> Expr s0 s2 Bool infix 4 Source #
Expressions comparison.
(|>=|) :: NiceComparable a => Expr s0 s1 a -> Expr s1 s2 a -> Expr s0 s2 Bool infix 4 Source #
Expressions comparison.
(|&|) :: ArithOpHs And a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r infixl 2 Source #
Bitwise/logical AND
on expressions.
(|||) :: ArithOpHs Or a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r infixl 1 Source #
Bitwise/logical OR
on expressions.
In case you find this operator looking weird, see |.|.|
(|.|.|) :: ArithOpHs Or a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r infixl 1 Source #
An alias for |||
.
(|^|) :: ArithOpHs Xor a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r infixl 3 Source #
Bitwise/logical XOR
on expressions.
(|<<|) :: ArithOpHs Lsl a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r infix 8 Source #
Left shift on expressions.
(|>>|) :: ArithOpHs Lsr a b r => Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 r infix 8 Source #
Right shift on expressions.
(|:|) :: Expr s0 s1 a -> Expr s1 s2 [a] -> Expr s0 s2 [a] infix 1 Source #
cons
on expressions.
one :: a : s :-> [a] : s one = take |:| nil
pairE :: (Expr s0 s1 a, Expr s1 s2 b) -> Expr s0 s2 (a, b) Source #
An alias for |@|
.
trivialContract :: ((), storage) :-> ([Operation], Storage) trivialContract = pairE ( nil , cdr )
(|@|) :: Expr s0 s1 a -> Expr s1 s2 b -> Expr s0 s2 (a, b) infix 0 Source #
Construct a simple pair.
trivialContract :: ((), storage) :-> ([Operation], Storage) trivialContract = nil |@| cdr
This is useful as pair appears even in simple contracts.
For more advanced types, use constructT
.
listE :: KnownValue a => [Expr s s a] -> Expr s s [a] Source #
Construct a list given the constructor for each element.
transferTokensE :: NiceParameter p => ("arg" :! Expr s0 s1 p) -> ("amount" :! Expr s1 s2 Mutez) -> ("contract" :! Expr s2 s3 (ContractRef p)) -> Expr s0 s3 Operation Source #
Version of transferTokens
instruction that accepts
all the arguments as expressions.
transferTokensE ! #arg L.unit ! #amount (push zeroMutez) ! #contract take |:| nil
You can provide arguments in arbitrary order, but direction of stack changes
flow is fixed: stack change in arg
expression affects stack available in
amount
expression, and stack changes in amount
expression affect
stack changes in contract
expression.