{-# OPTIONS_GHC -Wno-unticked-promoted-constructors #-}
module Lorentz.Instr
( nop
, drop
, dropN
, ConstraintDUPNLorentz
, dup
, dupNPeano
, dupN
, swap
, ConstraintDIGLorentz
, digPeano
, dig
, ConstraintDUGLorentz
, dugPeano
, dug
, push
, some
, none
, unit
, ifNone
, pair
, car
, cdr
, unpair
, left
, right
, ifLeft
, nil
, cons
, size
, emptySet
, emptyMap
, emptyBigMap
, map
, iter
, mem
, get
, ConstraintPairGetLorentz
, PairGetHs
, pairGet
, update
, getAndUpdate
, ConstraintPairUpdateLorentz
, PairUpdateHs
, pairUpdate
, failingWhenPresent
, updateNew
, if_
, ifCons
, loop
, loopLeft
, lambda
, exec
, execute
, apply
, applicate
, dip
, ConstraintDIPNLorentz
, dipNPeano
, dipN
, failWith
, cast
, pack
, unpack
, packRaw
, unpackRaw
, concat
, concat'
, slice, isNat, add, sub, rsub, mul, ediv, abs
, subMutez, rsubMutez
, neg
, lsl
, lsr
, or
, and
, xor
, not
, compare
, eq0
, neq0
, lt0
, gt0
, le0
, ge0
, int
, toTAddress_
, view'
, self
, selfCalling
, contract
, contractCalling
, unsafeContractCalling
, runFutureContract
, epAddressToContract
, transferTokens
, setDelegate
, createContract
, implicitAccount
, now
, minBlockTime
, amount
, balance
, votingPower
, totalVotingPower
, checkSignature
, sha256
, sha512
, blake2B
, sha3
, keccak
, hashKey
, pairingCheck
, source
, sender
, address
, selfAddress
, ticket
, ReadTicket
, readTicket
, splitTicket
, splitTicketNamed
, joinTickets
, openChest
, chainId
, level
, never
, framed
, LorentzFunctor (..)
) where
import Prelude hiding
(EQ, GT, LT, abs, and, compare, concat, drop, get, map, not, or, some, swap, xor)
import Data.Constraint ((\\))
import GHC.TypeNats (Nat)
import Lorentz.Address
import Lorentz.Arith
import Lorentz.Base
import Lorentz.Bytes
import Lorentz.Constraints
import Lorentz.Entrypoints
import Lorentz.Lambda
import Lorentz.Polymorphic
import Lorentz.Value
import Lorentz.ViewBase
import Lorentz.Zip
import Morley.Michelson.Typed
(ConstraintDIG, ConstraintDIG', ConstraintDIPN, ConstraintDIPN', ConstraintDUG, ConstraintDUG',
ConstraintDUPN, ConstraintDUPN', ConstraintGetN, ConstraintUpdateN, EntrypointCallT(..), GetN,
Instr(..), RemFail(..), SingI, SomeEntrypointCallT(..), UpdateN, Value'(..), pattern CAR,
pattern CDR, pattern LEFT, pattern PAIR, pattern RIGHT, pattern UNPAIR, sepcName)
import Morley.Michelson.Typed.Arith
import Morley.Michelson.Typed.Contract (giveNotInView)
import Morley.Michelson.Typed.Haskell.Value
import Morley.Util.Named
import Morley.Util.Peano
import Morley.Util.PeanoNatural
import Morley.Util.Type
import Morley.Util.TypeLits
nop :: s :-> s
nop :: forall (s :: [*]). s :-> s
nop = Instr (ToTs s) (ToTs s) -> s :-> s
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs s)
forall (inp :: [T]). Instr inp inp
Nop
drop :: a : s :-> s
drop :: forall a (s :: [*]). (a : s) :-> s
drop = Instr (ToTs (a : s)) (ToTs s) -> (a : s) :-> s
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (a : s)) (ToTs s)
forall (a :: T) (out :: [T]). Instr (a : out) out
DROP
dropN ::
forall (n :: Nat) (s :: [Type]).
( SingIPeano n
, RequireLongerOrSameLength (ToTs s) (ToPeano n)
, Drop (ToPeano n) (ToTs s) ~ ToTs (Drop (ToPeano n) s)
) => s :-> Drop (ToPeano n) s
dropN :: forall (n :: Nat) (s :: [*]).
(SingIPeano n, RequireLongerOrSameLength (ToTs s) (ToPeano n),
Drop (ToPeano n) (ToTs s) ~ ToTs (Drop (ToPeano n) s)) =>
s :-> Drop (ToPeano n) s
dropN = Instr (ToTs s) (ToTs (Drop (ToPeano n) s))
-> s :-> Drop (ToPeano n) s
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs s) (ToTs (Drop (ToPeano n) s))
-> s :-> Drop (ToPeano n) s)
-> Instr (ToTs s) (ToTs (Drop (ToPeano n) s))
-> s :-> Drop (ToPeano n) s
forall a b. (a -> b) -> a -> b
$ PeanoNatural (ToPeano n)
-> Instr (ToTs s) (Drop (ToPeano n) (ToTs s))
forall (n :: Peano) (inp :: [T]).
RequireLongerOrSameLength inp n =>
PeanoNatural n -> Instr inp (Drop n inp)
DROPN (PeanoNatural (ToPeano n)
-> Instr (ToTs s) (Drop (ToPeano n) (ToTs s)))
-> PeanoNatural (ToPeano n)
-> Instr (ToTs s) (Drop (ToPeano n) (ToTs s))
forall a b. (a -> b) -> a -> b
$ forall (n :: Nat). SingIPeano n => PeanoNatural (ToPeano n)
toPeanoNatural' @n
where
_example :: '[ Integer, Integer, Integer ] :-> '[]
_example :: '[Integer, Integer, Integer] :-> '[]
_example = forall (n :: Nat) (s :: [*]).
(SingIPeano n, RequireLongerOrSameLength (ToTs s) (ToPeano n),
Drop (ToPeano n) (ToTs s) ~ ToTs (Drop (ToPeano n) s)) =>
s :-> Drop (ToPeano n) s
dropN @3
dup :: forall a s. Dupable a => a : s :-> a : a : s
dup :: forall a (s :: [*]). Dupable a => (a : s) :-> (a : a : s)
dup = Instr (ToTs (a : s)) (ToTs (a : a : s)) -> (a : s) :-> (a : a : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (a : s)) (ToTs (a : a : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ (a : s), out ~ (a : a : s), DupableScope a) =>
Instr inp out
DUP (DupableScope (ToT a) => (a : s) :-> (a : a : s))
-> (Dupable a :- DupableScope (ToT a)) -> (a : s) :-> (a : a : s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. Dupable a :- DupableScope (ToT a)
dupableEvi @a
type ConstraintDUPNLorentz (n :: Peano) (inp :: [Type]) (out :: [Type])
(a :: Type) =
( ConstraintDUPN n (ToTs inp) (ToTs out) (ToT a)
, ConstraintDUPN' Type n inp out a
, SingI n
)
dupNPeano ::
forall (n :: Peano) a inp out.
( ConstraintDUPNLorentz n inp out a, Dupable a ) => inp :-> out
dupNPeano :: forall (n :: Peano) a (inp :: [*]) (out :: [*]).
(ConstraintDUPNLorentz n inp out a, Dupable a) =>
inp :-> out
dupNPeano = (Instr (ToTs inp) (ToTs (a : inp)) -> inp :-> (a : inp)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs inp) (ToTs (a : inp)) -> inp :-> (a : inp))
-> Instr (ToTs inp) (ToTs (a : inp)) -> inp :-> (a : inp)
forall a b. (a -> b) -> a -> b
$ PeanoNatural n
-> Instr
(Take (Decrement n) (ToTs inp) ++ (ToT a : Drop n (ToTs inp)))
(ToT a
: (Take (Decrement n) (ToTs inp) ++ (ToT a : Drop n (ToTs inp))))
forall {inp :: [T]} {out :: [T]} (n :: Peano) (inp1 :: [T])
(out1 :: [T]) (a :: T).
(inp ~ inp1, out ~ out1, ConstraintDUPN n inp1 out1 a,
DupableScope a) =>
PeanoNatural n -> Instr inp out
DUPN (PeanoNatural n
-> Instr
(Take (Decrement n) (ToTs inp) ++ (ToT a : Drop n (ToTs inp)))
(ToT a
: (Take (Decrement n) (ToTs inp) ++ (ToT a : Drop n (ToTs inp)))))
-> PeanoNatural n
-> Instr
(Take (Decrement n) (ToTs inp) ++ (ToT a : Drop n (ToTs inp)))
(ToT a
: (Take (Decrement n) (ToTs inp) ++ (ToT a : Drop n (ToTs inp))))
forall a b. (a -> b) -> a -> b
$ forall (n :: Peano). SingI n => PeanoNatural n
toPeanoNatural @n) (DupableScope (ToT a) => inp :-> out)
-> (Dupable a :- DupableScope (ToT a)) -> inp :-> out
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. Dupable a :- DupableScope (ToT a)
dupableEvi @a
dupN ::
forall (n :: Nat) a inp out.
( ConstraintDUPNLorentz (ToPeano n) inp out a, Dupable a ) => inp :-> out
dupN :: forall (n :: Nat) a (inp :: [*]) (out :: [*]).
(ConstraintDUPNLorentz (ToPeano n) inp out a, Dupable a) =>
inp :-> out
dupN = forall (n :: Peano) a (inp :: [*]) (out :: [*]).
(ConstraintDUPNLorentz n inp out a, Dupable a) =>
inp :-> out
dupNPeano @(ToPeano n)
where
_example :: '[ Integer, (), Bool ] :-> '[ Bool, Integer, (), Bool ]
_example :: '[Integer, (), Bool] :-> '[Bool, Integer, (), Bool]
_example = forall (n :: Nat) a (inp :: [*]) (out :: [*]).
(ConstraintDUPNLorentz (ToPeano n) inp out a, Dupable a) =>
inp :-> out
dupN @3
swap :: a : b : s :-> b : a : s
swap :: forall a b (s :: [*]). (a : b : s) :-> (b : a : s)
swap = Instr (ToTs (a : b : s)) (ToTs (b : a : s))
-> (a : b : s) :-> (b : a : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (a : b : s)) (ToTs (b : a : s))
forall (a :: T) (b :: T) (s :: [T]). Instr (a : b : s) (b : a : s)
SWAP
type ConstraintDIGLorentz (n :: Peano) (inp :: [Type]) (out :: [Type])
(a :: Type) =
( ConstraintDIG n (ToTs inp) (ToTs out) (ToT a)
, ConstraintDIG' Type n inp out a
, SingI n
)
type ConstraintDUGLorentz (n :: Peano) (inp :: [Type]) (out :: [Type])
(a :: Type) =
( ConstraintDUG n (ToTs inp) (ToTs out) (ToT a)
, ConstraintDUG' Type n inp out a
, SingI n
)
digPeano ::
forall (n :: Peano) inp out a.
( ConstraintDIGLorentz n inp out a
) => inp :-> out
digPeano :: forall (n :: Peano) (inp :: [*]) (out :: [*]) a.
ConstraintDIGLorentz n inp out a =>
inp :-> out
digPeano = Instr (ToTs inp) (ToTs out) -> inp :-> out
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs inp) (ToTs out) -> inp :-> out)
-> Instr (ToTs inp) (ToTs out) -> inp :-> out
forall a b. (a -> b) -> a -> b
$ PeanoNatural n
-> Instr
(Take n (ToTs inp) ++ (ToT a : Drop ('S n) (ToTs inp)))
(ToT a : (Take n (ToTs inp) ++ Drop ('S n) (ToTs inp)))
forall (n :: Peano) (inp :: [T]) (out :: [T]) (a :: T).
ConstraintDIG n inp out a =>
PeanoNatural n -> Instr inp out
DIG (PeanoNatural n
-> Instr
(Take n (ToTs inp) ++ (ToT a : Drop ('S n) (ToTs inp)))
(ToT a : (Take n (ToTs inp) ++ Drop ('S n) (ToTs inp))))
-> PeanoNatural n
-> Instr
(Take n (ToTs inp) ++ (ToT a : Drop ('S n) (ToTs inp)))
(ToT a : (Take n (ToTs inp) ++ Drop ('S n) (ToTs inp)))
forall a b. (a -> b) -> a -> b
$ forall (n :: Peano). SingI n => PeanoNatural n
toPeanoNatural @n
dig ::
forall (n :: Nat) inp out a.
( ConstraintDIGLorentz (ToPeano n) inp out a
) => inp :-> out
dig :: forall (n :: Nat) (inp :: [*]) (out :: [*]) a.
ConstraintDIGLorentz (ToPeano n) inp out a =>
inp :-> out
dig = forall (n :: Peano) (inp :: [*]) (out :: [*]) a.
ConstraintDIGLorentz n inp out a =>
inp :-> out
digPeano @(ToPeano n)
where
_example ::
'[ Integer, Integer, Integer, Bool ] :->
'[ Bool, Integer, Integer, Integer ]
_example :: '[Integer, Integer, Integer, Bool]
:-> '[Bool, Integer, Integer, Integer]
_example = forall (n :: Nat) (inp :: [*]) (out :: [*]) a.
ConstraintDIGLorentz (ToPeano n) inp out a =>
inp :-> out
dig @3
dugPeano ::
forall (n :: Peano) inp out a.
( ConstraintDUGLorentz n inp out a
) => inp :-> out
dugPeano :: forall (n :: Peano) (inp :: [*]) (out :: [*]) a.
ConstraintDUGLorentz n inp out a =>
inp :-> out
dugPeano = Instr (ToTs inp) (ToTs out) -> inp :-> out
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs inp) (ToTs out) -> inp :-> out)
-> Instr (ToTs inp) (ToTs out) -> inp :-> out
forall a b. (a -> b) -> a -> b
$ PeanoNatural n
-> Instr
(ToT a : ToTs (Drop ('S 'Z) inp))
(Take n (Drop ('S 'Z) (ToTs inp))
++ (ToT a : Drop ('S n) (ToTs inp)))
forall (n :: Peano) (inp :: [T]) (out :: [T]) (a :: T).
ConstraintDUG n inp out a =>
PeanoNatural n -> Instr inp out
DUG (PeanoNatural n
-> Instr
(ToT a : ToTs (Drop ('S 'Z) inp))
(Take n (Drop ('S 'Z) (ToTs inp))
++ (ToT a : Drop ('S n) (ToTs inp))))
-> PeanoNatural n
-> Instr
(ToT a : ToTs (Drop ('S 'Z) inp))
(Take n (Drop ('S 'Z) (ToTs inp))
++ (ToT a : Drop ('S n) (ToTs inp)))
forall a b. (a -> b) -> a -> b
$ forall (n :: Peano). SingI n => PeanoNatural n
toPeanoNatural @n
dug ::
forall (n :: Nat) inp out a.
( ConstraintDUGLorentz (ToPeano n) inp out a
) => inp :-> out
dug :: forall (n :: Nat) (inp :: [*]) (out :: [*]) a.
ConstraintDUGLorentz (ToPeano n) inp out a =>
inp :-> out
dug = forall (n :: Peano) (inp :: [*]) (out :: [*]) a.
ConstraintDUGLorentz n inp out a =>
inp :-> out
dugPeano @(ToPeano n)
where
_example ::
'[ Bool, Integer, Integer, Integer ] :->
'[ Integer, Integer, Integer, Bool ]
_example :: '[Bool, Integer, Integer, Integer]
:-> '[Integer, Integer, Integer, Bool]
_example = forall (n :: Nat) (inp :: [*]) (out :: [*]) a.
ConstraintDUGLorentz (ToPeano n) inp out a =>
inp :-> out
dug @3
push :: forall t s . NiceConstant t => t -> (s :-> t : s)
push :: forall t (s :: [*]). NiceConstant t => t -> s :-> (t : s)
push t
a = Instr (ToTs s) (ToTs (t : s)) -> s :-> (t : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs s) (ToTs (t : s)) -> s :-> (t : s))
-> Instr (ToTs s) (ToTs (t : s)) -> s :-> (t : s)
forall a b. (a -> b) -> a -> b
$ Value' Instr (ToT t) -> Instr (ToTs s) (ToT t : ToTs s)
forall {inp :: [T]} {out :: [T]} (t :: T) (s :: [T]).
(inp ~ s, out ~ (t : s), ConstantScope t) =>
Value' Instr t -> Instr inp out
PUSH (t -> Value' Instr (ToT t)
forall a. IsoValue a => a -> Value (ToT a)
toVal t
a) (ConstantScope (ToT t) => Instr (ToTs s) (ToT t : ToTs s))
-> (NiceConstant t :- ConstantScope (ToT t))
-> Instr (ToTs s) (ToT t : ToTs s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NiceConstant a :- ConstantScope (ToT a)
niceConstantEvi @t
some :: a : s :-> Maybe a : s
some :: forall a (s :: [*]). (a : s) :-> (Maybe a : s)
some = Instr (ToTs (a : s)) (ToTs (Maybe a : s))
-> (a : s) :-> (Maybe a : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (a : s)) (ToTs (Maybe a : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ (a : s), out ~ ('TOption a : s)) =>
Instr inp out
SOME
none :: forall a s . KnownValue a => s :-> (Maybe a : s)
none :: forall a (s :: [*]). KnownValue a => s :-> (Maybe a : s)
none = Instr (ToTs s) (ToTs (Maybe a : s)) -> s :-> (Maybe a : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (Maybe a : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ s, out ~ ('TOption a : s), SingI a) =>
Instr inp out
NONE
unit :: s :-> () : s
unit :: forall (s :: [*]). s :-> (() : s)
unit = Instr (ToTs s) (ToTs (() : s)) -> s :-> (() : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (() : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ s, out ~ ('TUnit : s)) =>
Instr inp out
UNIT
ifNone
:: (s :-> s') -> (a : s :-> s') -> (Maybe a : s :-> s')
ifNone :: forall (s :: [*]) (s' :: [*]) a.
(s :-> s') -> ((a : s) :-> s') -> (Maybe a : s) :-> s'
ifNone = (forall (s' :: [T]).
Instr (ToTs s) s'
-> Instr (ToTs (a : s)) s' -> Instr (ToTs (Maybe a : s)) s')
-> (s :-> s') -> ((a : s) :-> s') -> (Maybe a : s) :-> s'
forall (a :: [*]) (b :: [*]) (c :: [*]) (s :: [*]).
(forall (s' :: [T]).
Instr (ToTs a) s' -> Instr (ToTs b) s' -> Instr (ToTs c) s')
-> (a :-> s) -> (b :-> s) -> c :-> s
iGenericIf forall (s' :: [T]).
Instr (ToTs s) s'
-> Instr (ToTs (a : s)) s' -> Instr (ToTs (Maybe a : s)) s'
forall (s :: [T]) (out :: [T]) (a :: T).
Instr s out -> Instr (a : s) out -> Instr ('TOption a : s) out
IF_NONE
pair :: a : b : s :-> (a, b) : s
pair :: forall a b (s :: [*]). (a : b : s) :-> ((a, b) : s)
pair = Instr (ToTs (a : b : s)) (ToTs ((a, b) : s))
-> (a : b : s) :-> ((a, b) : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (a : b : s)) (ToTs ((a, b) : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (b :: T) (s :: [T]).
(inp ~ (a : b : s), out ~ ('TPair a b : s)) =>
Instr inp out
PAIR
car :: (a, b) : s :-> a : s
car :: forall a b (s :: [*]). ((a, b) : s) :-> (a : s)
car = Instr (ToTs ((a, b) : s)) (ToTs (a : s))
-> ((a, b) : s) :-> (a : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs ((a, b) : s)) (ToTs (a : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (b :: T) (s :: [T]).
(inp ~ ('TPair a b : s), out ~ (a : s)) =>
Instr inp out
CAR
cdr :: (a, b) : s :-> b : s
cdr :: forall a b (s :: [*]). ((a, b) : s) :-> (b : s)
cdr = Instr (ToTs ((a, b) : s)) (ToTs (b : s))
-> ((a, b) : s) :-> (b : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs ((a, b) : s)) (ToTs (b : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (b :: T) (s :: [T]).
(inp ~ ('TPair a b : s), out ~ (b : s)) =>
Instr inp out
CDR
unpair :: (a, b) : s :-> a : b : s
unpair :: forall a b (s :: [*]). ((a, b) : s) :-> (a : b : s)
unpair = Instr (ToTs ((a, b) : s)) (ToTs (a : b : s))
-> ((a, b) : s) :-> (a : b : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs ((a, b) : s)) (ToTs (a : b : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (b :: T) (s :: [T]).
(inp ~ ('TPair a b : s), out ~ (a : b : s)) =>
Instr inp out
UNPAIR
left :: forall a b s. KnownValue b => a : s :-> Either a b : s
left :: forall a b (s :: [*]). KnownValue b => (a : s) :-> (Either a b : s)
left = Instr (ToTs (a : s)) (ToTs (Either a b : s))
-> (a : s) :-> (Either a b : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (a : s)) (ToTs (Either a b : s))
forall {inp :: [T]} {out :: [T]} (b :: T) (a :: T) (s :: [T]).
(inp ~ (a : s), out ~ ('TOr a b : s), SingI b) =>
Instr inp out
LEFT
right :: forall a b s. KnownValue a => b : s :-> Either a b : s
right :: forall a b (s :: [*]). KnownValue a => (b : s) :-> (Either a b : s)
right = Instr (ToTs (b : s)) (ToTs (Either a b : s))
-> (b : s) :-> (Either a b : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (b : s)) (ToTs (Either a b : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (b :: T) (s :: [T]).
(inp ~ (b : s), out ~ ('TOr a b : s), SingI a) =>
Instr inp out
RIGHT
ifLeft
:: (a : s :-> s') -> (b : s :-> s') -> (Either a b : s :-> s')
ifLeft :: forall a (s :: [*]) (s' :: [*]) b.
((a : s) :-> s') -> ((b : s) :-> s') -> (Either a b : s) :-> s'
ifLeft = (forall (s' :: [T]).
Instr (ToTs (a : s)) s'
-> Instr (ToTs (b : s)) s' -> Instr (ToTs (Either a b : s)) s')
-> ((a : s) :-> s') -> ((b : s) :-> s') -> (Either a b : s) :-> s'
forall (a :: [*]) (b :: [*]) (c :: [*]) (s :: [*]).
(forall (s' :: [T]).
Instr (ToTs a) s' -> Instr (ToTs b) s' -> Instr (ToTs c) s')
-> (a :-> s) -> (b :-> s) -> c :-> s
iGenericIf forall (s' :: [T]).
Instr (ToTs (a : s)) s'
-> Instr (ToTs (b : s)) s' -> Instr (ToTs (Either a b : s)) s'
forall (a :: T) (s :: [T]) (out :: [T]) (b :: T).
Instr (a : s) out -> Instr (b : s) out -> Instr ('TOr a b : s) out
IF_LEFT
nil :: KnownValue p => s :-> List p : s
nil :: forall p (s :: [*]). KnownValue p => s :-> (List p : s)
nil = Instr (ToTs s) (ToTs (List p : s)) -> s :-> (List p : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (List p : s))
forall {inp :: [T]} {out :: [T]} (p :: T) (s :: [T]).
(inp ~ s, out ~ ('TList p : s), SingI p) =>
Instr inp out
NIL
cons :: a : List a : s :-> List a : s
cons :: forall a (s :: [*]). (a : List a : s) :-> (List a : s)
cons = Instr (ToTs (a : List a : s)) (ToTs (List a : s))
-> (a : List a : s) :-> (List a : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (a : List a : s)) (ToTs (List a : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ (a : 'TList a : s), out ~ ('TList a : s)) =>
Instr inp out
CONS
ifCons
:: (a : List a : s :-> s') -> (s :-> s') -> (List a : s :-> s')
ifCons :: forall a (s :: [*]) (s' :: [*]).
((a : List a : s) :-> s') -> (s :-> s') -> (List a : s) :-> s'
ifCons = (forall (s' :: [T]).
Instr (ToTs (a : List a : s)) s'
-> Instr (ToTs s) s' -> Instr (ToTs (List a : s)) s')
-> ((a : List a : s) :-> s') -> (s :-> s') -> (List a : s) :-> s'
forall (a :: [*]) (b :: [*]) (c :: [*]) (s :: [*]).
(forall (s' :: [T]).
Instr (ToTs a) s' -> Instr (ToTs b) s' -> Instr (ToTs c) s')
-> (a :-> s) -> (b :-> s) -> c :-> s
iGenericIf forall (s' :: [T]).
Instr (ToTs (a : List a : s)) s'
-> Instr (ToTs s) s' -> Instr (ToTs (List a : s)) s'
forall (a :: T) (s :: [T]) (out :: [T]).
Instr (a : 'TList a : s) out
-> Instr s out -> Instr ('TList a : s) out
IF_CONS
size :: SizeOpHs c => c : s :-> Natural : s
size :: forall c (s :: [*]). SizeOpHs c => (c : s) :-> (Natural : s)
size = Instr (ToTs (c : s)) (ToTs (Natural : s))
-> (c : s) :-> (Natural : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (c : s)) (ToTs (Natural : s))
forall {inp :: [T]} {out :: [T]} (c :: T) (s :: [T]).
(inp ~ (c : s), out ~ ('TNat : s), SizeOp c) =>
Instr inp out
SIZE
emptySet :: (NiceComparable e) => s :-> Set e : s
emptySet :: forall e (s :: [*]). NiceComparable e => s :-> (Set e : s)
emptySet = Instr (ToTs s) (ToTs (Set e : s)) -> s :-> (Set e : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (Set e : s))
forall {inp :: [T]} {out :: [T]} (e :: T) (s :: [T]).
(inp ~ s, out ~ ('TSet e : s), SingI e, Comparable e) =>
Instr inp out
EMPTY_SET
emptyMap :: (NiceComparable k, KnownValue v)
=> s :-> Map k v : s
emptyMap :: forall k v (s :: [*]).
(NiceComparable k, KnownValue v) =>
s :-> (Map k v : s)
emptyMap = Instr (ToTs s) (ToTs (Map k v : s)) -> s :-> (Map k v : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (Map k v : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (b :: T) (s :: [T]).
(inp ~ s, out ~ ('TMap a b : s), SingI a, SingI b, Comparable a) =>
Instr inp out
EMPTY_MAP
emptyBigMap :: (NiceComparable k, KnownValue v, NiceNoBigMap v)
=> s :-> BigMap k v : s
emptyBigMap :: forall k v (s :: [*]).
(NiceComparable k, KnownValue v, NiceNoBigMap v) =>
s :-> (BigMap k v : s)
emptyBigMap = Instr (ToTs s) (ToTs (BigMap k v : s)) -> s :-> (BigMap k v : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (BigMap k v : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (b :: T) (s :: [T]).
(inp ~ s, out ~ ('TBigMap a b : s), SingI a, SingI b, Comparable a,
HasNoBigMap b) =>
Instr inp out
EMPTY_BIG_MAP
map
:: (MapOpHs c, IsoMapOpRes c b, KnownValue b, HasCallStack)
=> (MapOpInpHs c : s :-> b : s) -> (c : s :-> MapOpResHs c b : s)
map :: forall c b (s :: [*]).
(MapOpHs c, IsoMapOpRes c b, KnownValue b, HasCallStack) =>
((MapOpInpHs c : s) :-> (b : s))
-> (c : s) :-> (MapOpResHs c b : s)
map (((MapOpInpHs c : s) :-> (b : s))
-> Instr (ToTs (MapOpInpHs c : s)) (ToTs (b : s))
forall (inp :: [*]) (out :: [*]).
HasCallStack =>
(inp :-> out) -> Instr (ToTs inp) (ToTs out)
iNonFailingCode -> Instr (ToTs (MapOpInpHs c : s)) (ToTs (b : s))
action) = Instr (ToTs (c : s)) (ToTs (MapOpResHs c b : s))
-> (c : s) :-> (MapOpResHs c b : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (MapOpInp (ToT c) : ToTs s) (ToT b : ToTs s)
-> Instr (ToT c : ToTs s) (MapOpRes (ToT c) (ToT b) : ToTs s)
forall {inp :: [T]} {out :: [T]} (c :: T) (b :: T) (s :: [T]).
(inp ~ (c : s), out ~ (MapOpRes c b : s), MapOp c, SingI b) =>
Instr (MapOpInp c : s) (b : s) -> Instr inp out
MAP Instr (MapOpInp (ToT c) : ToTs s) (ToT b : ToTs s)
Instr (ToTs (MapOpInpHs c : s)) (ToTs (b : s))
action)
iter
:: (IterOpHs c, HasCallStack)
=> (IterOpElHs c : s :-> s) -> (c : s :-> s)
iter :: forall c (s :: [*]).
(IterOpHs c, HasCallStack) =>
((IterOpElHs c : s) :-> s) -> (c : s) :-> s
iter (((IterOpElHs c : s) :-> s)
-> Instr (ToTs (IterOpElHs c : s)) (ToTs s)
forall (inp :: [*]) (out :: [*]).
HasCallStack =>
(inp :-> out) -> Instr (ToTs inp) (ToTs out)
iNonFailingCode -> Instr (ToTs (IterOpElHs c : s)) (ToTs s)
action) = Instr (ToTs (c : s)) (ToTs s) -> (c : s) :-> s
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (IterOpEl (ToT c) : ToTs s) (ToTs s)
-> Instr (ToT c : ToTs s) (ToTs s)
forall (c :: T) (out :: [T]).
IterOp c =>
Instr (IterOpEl c : out) out -> Instr (c : out) out
ITER Instr (IterOpEl (ToT c) : ToTs s) (ToTs s)
Instr (ToTs (IterOpElHs c : s)) (ToTs s)
action)
mem :: MemOpHs c => MemOpKeyHs c : c : s :-> Bool : s
mem :: forall c (s :: [*]).
MemOpHs c =>
(MemOpKeyHs c : c : s) :-> (Bool : s)
mem = Instr (ToTs (MemOpKeyHs c : c : s)) (ToTs (Bool : s))
-> (MemOpKeyHs c : c : s) :-> (Bool : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (MemOpKeyHs c : c : s)) (ToTs (Bool : s))
forall {inp :: [T]} {out :: [T]} (c :: T) (s :: [T]).
(inp ~ (MemOpKey c : c : s), out ~ ('TBool : s), MemOp c) =>
Instr inp out
MEM
get
:: (GetOpHs c, KnownValue (GetOpValHs c))
=> GetOpKeyHs c : c : s :-> Maybe (GetOpValHs c) : s
get :: forall c (s :: [*]).
(GetOpHs c, KnownValue (GetOpValHs c)) =>
(GetOpKeyHs c : c : s) :-> (Maybe (GetOpValHs c) : s)
get = Instr
(ToTs (GetOpKeyHs c : c : s)) (ToTs (Maybe (GetOpValHs c) : s))
-> (GetOpKeyHs c : c : s) :-> (Maybe (GetOpValHs c) : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr
(ToTs (GetOpKeyHs c : c : s)) (ToTs (Maybe (GetOpValHs c) : s))
forall {inp :: [T]} {out :: [T]} (c :: T) (s :: [T]).
(inp ~ (GetOpKey c : c : s), out ~ ('TOption (GetOpVal c) : s),
GetOp c, SingI (GetOpVal c)) =>
Instr inp out
GET
type ConstraintPairGetLorentz (n :: Nat) (pair :: Type) =
( ConstraintGetN (ToPeano n) (ToT pair)
, ToT (PairGetHs (ToPeano n) pair) ~ GetN (ToPeano n) (ToT pair)
, SingIPeano n
)
type family PairGetHs (ix :: Peano) (pair :: Type) :: Type where
PairGetHs 'Z val = val
PairGetHs ('S 'Z) (left, _) = left
PairGetHs ('S ('S n)) (_, right) = PairGetHs n right
pairGet
:: forall (n :: Nat) (pair :: Type) (s :: [Type]).
ConstraintPairGetLorentz n pair
=> pair : s :-> PairGetHs (ToPeano n) pair : s
pairGet :: forall (n :: Nat) pair (s :: [*]).
ConstraintPairGetLorentz n pair =>
(pair : s) :-> (PairGetHs (ToPeano n) pair : s)
pairGet = Instr (ToTs (pair : s)) (ToTs (PairGetHs (ToPeano n) pair : s))
-> (pair : s) :-> (PairGetHs (ToPeano n) pair : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs (pair : s)) (ToTs (PairGetHs (ToPeano n) pair : s))
-> (pair : s) :-> (PairGetHs (ToPeano n) pair : s))
-> Instr (ToTs (pair : s)) (ToTs (PairGetHs (ToPeano n) pair : s))
-> (pair : s) :-> (PairGetHs (ToPeano n) pair : s)
forall a b. (a -> b) -> a -> b
$ PeanoNatural (ToPeano n)
-> Instr (ToT pair : ToTs s) (GetN (ToPeano n) (ToT pair) : ToTs s)
forall {inp :: [T]} {out :: [T]} (ix :: Peano) (pair :: T)
(s :: [T]).
(inp ~ (pair : s), out ~ (GetN ix pair : s),
ConstraintGetN ix pair) =>
PeanoNatural ix -> Instr inp out
GETN (PeanoNatural (ToPeano n)
-> Instr
(ToT pair : ToTs s) (GetN (ToPeano n) (ToT pair) : ToTs s))
-> PeanoNatural (ToPeano n)
-> Instr (ToT pair : ToTs s) (GetN (ToPeano n) (ToT pair) : ToTs s)
forall a b. (a -> b) -> a -> b
$ forall (n :: Nat). SingIPeano n => PeanoNatural (ToPeano n)
toPeanoNatural' @n
where
_example :: '[ (Integer, Natural), () ] :-> '[ Integer, () ]
_example :: '[(Integer, Natural), ()] :-> '[Integer, ()]
_example = forall (n :: Nat) pair (s :: [*]).
ConstraintPairGetLorentz n pair =>
(pair : s) :-> (PairGetHs (ToPeano n) pair : s)
pairGet @1
update :: UpdOpHs c => UpdOpKeyHs c : UpdOpParamsHs c : c : s :-> c : s
update :: forall c (s :: [*]).
UpdOpHs c =>
(UpdOpKeyHs c : UpdOpParamsHs c : c : s) :-> (c : s)
update = Instr
(ToTs (UpdOpKeyHs c : UpdOpParamsHs c : c : s)) (ToTs (c : s))
-> (UpdOpKeyHs c : UpdOpParamsHs c : c : s) :-> (c : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr
(ToTs (UpdOpKeyHs c : UpdOpParamsHs c : c : s)) (ToTs (c : s))
forall {inp :: [T]} {out :: [T]} (c :: T) (s :: [T]).
(inp ~ (UpdOpKey c : UpdOpParams c : c : s), out ~ (c : s),
UpdOp c) =>
Instr inp out
UPDATE
getAndUpdate
:: (GetOpHs c, UpdOpHs c, KnownValue (GetOpValHs c), UpdOpKeyHs c ~ GetOpKeyHs c)
=> UpdOpKeyHs c : UpdOpParamsHs c : c : s :-> Maybe (GetOpValHs c) : c : s
getAndUpdate :: forall c (s :: [*]).
(GetOpHs c, UpdOpHs c, KnownValue (GetOpValHs c),
UpdOpKeyHs c ~ GetOpKeyHs c) =>
(UpdOpKeyHs c : UpdOpParamsHs c : c : s)
:-> (Maybe (GetOpValHs c) : c : s)
getAndUpdate = Instr
(ToTs (GetOpKeyHs c : UpdOpParamsHs c : c : s))
(ToTs (Maybe (GetOpValHs c) : c : s))
-> (GetOpKeyHs c : UpdOpParamsHs c : c : s)
:-> (Maybe (GetOpValHs c) : c : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr
(ToTs (GetOpKeyHs c : UpdOpParamsHs c : c : s))
(ToTs (Maybe (GetOpValHs c) : c : s))
forall {inp :: [T]} {out :: [T]} (c :: T) (s :: [T]).
(inp ~ (UpdOpKey c : UpdOpParams c : c : s),
out ~ ('TOption (GetOpVal c) : c : s), GetOp c, UpdOp c,
SingI (GetOpVal c), UpdOpKey c ~ GetOpKey c) =>
Instr inp out
GET_AND_UPDATE
type ConstraintPairUpdateLorentz (n :: Nat) (val :: Type) (pair :: Type) =
( ConstraintUpdateN (ToPeano n) (ToT pair)
, ToT (PairUpdateHs (ToPeano n) val pair) ~ UpdateN (ToPeano n) (ToT val) (ToT pair)
, SingIPeano n
)
type family PairUpdateHs (ix :: Peano) (val :: Type) (pair :: Type) :: Type where
PairUpdateHs 'Z val _ = val
PairUpdateHs ('S 'Z) val (_, right) = (val, right)
PairUpdateHs ('S ('S n)) val (left, right) = (left, PairUpdateHs n val right)
pairUpdate
:: forall (n :: Nat) (val :: Type) (pair :: Type) (s :: [Type]).
(ConstraintPairUpdateLorentz n val pair)
=> val : pair : s :-> PairUpdateHs (ToPeano n) val pair : s
pairUpdate :: forall (n :: Nat) val pair (s :: [*]).
ConstraintPairUpdateLorentz n val pair =>
(val : pair : s) :-> (PairUpdateHs (ToPeano n) val pair : s)
pairUpdate = Instr
(ToTs (val : pair : s))
(ToTs (PairUpdateHs (ToPeano n) val pair : s))
-> (val : pair : s) :-> (PairUpdateHs (ToPeano n) val pair : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr
(ToTs (val : pair : s))
(ToTs (PairUpdateHs (ToPeano n) val pair : s))
-> (val : pair : s) :-> (PairUpdateHs (ToPeano n) val pair : s))
-> Instr
(ToTs (val : pair : s))
(ToTs (PairUpdateHs (ToPeano n) val pair : s))
-> (val : pair : s) :-> (PairUpdateHs (ToPeano n) val pair : s)
forall a b. (a -> b) -> a -> b
$ PeanoNatural (ToPeano n)
-> Instr
(ToT val : ToT pair : ToTs s)
(UpdateN (ToPeano n) (ToT val) (ToT pair) : ToTs s)
forall {inp :: [T]} {out :: [T]} (ix :: Peano) (val :: T)
(pair :: T) (s :: [T]).
(inp ~ (val : pair : s), out ~ (UpdateN ix val pair : s),
ConstraintUpdateN ix pair) =>
PeanoNatural ix -> Instr inp out
UPDATEN (PeanoNatural (ToPeano n)
-> Instr
(ToT val : ToT pair : ToTs s)
(UpdateN (ToPeano n) (ToT val) (ToT pair) : ToTs s))
-> PeanoNatural (ToPeano n)
-> Instr
(ToT val : ToT pair : ToTs s)
(UpdateN (ToPeano n) (ToT val) (ToT pair) : ToTs s)
forall a b. (a -> b) -> a -> b
$ forall (n :: Nat). SingIPeano n => PeanoNatural (ToPeano n)
toPeanoNatural' @n
where
_example :: '[ MText, (Integer, Natural) ] :-> '[ (MText, Natural) ]
_example :: '[MText, (Integer, Natural)] :-> '[(MText, Natural)]
_example = forall (n :: Nat) val pair (s :: [*]).
ConstraintPairUpdateLorentz n val pair =>
(val : pair : s) :-> (PairUpdateHs (ToPeano n) val pair : s)
pairUpdate @1
if_ :: (s :-> s') -> (s :-> s') -> (Bool : s :-> s')
if_ :: forall (s :: [*]) (s' :: [*]).
(s :-> s') -> (s :-> s') -> (Bool : s) :-> s'
if_ = (forall (s' :: [T]).
Instr (ToTs s) s'
-> Instr (ToTs s) s' -> Instr (ToTs (Bool : s)) s')
-> (s :-> s') -> (s :-> s') -> (Bool : s) :-> s'
forall (a :: [*]) (b :: [*]) (c :: [*]) (s :: [*]).
(forall (s' :: [T]).
Instr (ToTs a) s' -> Instr (ToTs b) s' -> Instr (ToTs c) s')
-> (a :-> s) -> (b :-> s) -> c :-> s
iGenericIf forall (s' :: [T]).
Instr (ToTs s) s'
-> Instr (ToTs s) s' -> Instr (ToTs (Bool : s)) s'
forall (s :: [T]) (out :: [T]).
Instr s out -> Instr s out -> Instr ('TBool : s) out
IF
loop :: (s :-> Bool : s) -> (Bool : s :-> s)
loop :: forall (s :: [*]). (s :-> (Bool : s)) -> (Bool : s) :-> s
loop ((s :-> (Bool : s)) -> Instr (ToTs s) (ToTs (Bool : s))
forall (inp :: [*]) (out :: [*]).
(inp :-> out) -> Instr (ToTs inp) (ToTs out)
iAnyCode -> Instr (ToTs s) (ToTs (Bool : s))
b) = Instr (ToTs (Bool : s)) (ToTs s) -> (Bool : s) :-> s
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs s) ('TBool : ToTs s)
-> Instr ('TBool : ToTs s) (ToTs s)
forall (out :: [T]).
Instr out ('TBool : out) -> Instr ('TBool : out) out
LOOP Instr (ToTs s) ('TBool : ToTs s)
Instr (ToTs s) (ToTs (Bool : s))
b)
loopLeft
:: (a : s :-> Either a b : s) -> (Either a b : s :-> b : s)
loopLeft :: forall a (s :: [*]) b.
((a : s) :-> (Either a b : s)) -> (Either a b : s) :-> (b : s)
loopLeft (((a : s) :-> (Either a b : s))
-> Instr (ToTs (a : s)) (ToTs (Either a b : s))
forall (inp :: [*]) (out :: [*]).
(inp :-> out) -> Instr (ToTs inp) (ToTs out)
iAnyCode -> Instr (ToTs (a : s)) (ToTs (Either a b : s))
b) = Instr (ToTs (Either a b : s)) (ToTs (b : s))
-> (Either a b : s) :-> (b : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToT a : ToTs s) ('TOr (ToT a) (ToT b) : ToTs s)
-> Instr ('TOr (ToT a) (ToT b) : ToTs s) (ToT b : ToTs s)
forall (a :: T) (s :: [T]) (b :: T).
Instr (a : s) ('TOr a b : s) -> Instr ('TOr a b : s) (b : s)
LOOP_LEFT Instr (ToT a : ToTs s) ('TOr (ToT a) (ToT b) : ToTs s)
Instr (ToTs (a : s)) (ToTs (Either a b : s))
b)
lambda
:: ZipInstrs [i, o]
=> (IsNotInView => i :-> o) -> (s :-> WrappedLambda i o : s)
lambda :: forall (i :: [*]) (o :: [*]) (s :: [*]).
ZipInstrs '[i, o] =>
(IsNotInView => i :-> o) -> s :-> (WrappedLambda i o : s)
lambda IsNotInView => i :-> o
instr = case (i :-> o) -> Fn (ZippedStack i) (ZippedStack o)
forall (inp :: [*]) (out :: [*]).
ZipInstrs '[inp, out] =>
(inp :-> out) -> Fn (ZippedStack inp) (ZippedStack out)
zippingStack ((i :-> o) -> Fn (ZippedStack i) (ZippedStack o))
-> (i :-> o) -> Fn (ZippedStack i) (ZippedStack o)
forall a b. (a -> b) -> a -> b
$ (IsNotInView => i :-> o) -> i :-> o
forall r. (IsNotInView => r) -> r
giveNotInView IsNotInView => i :-> o
instr of
I Instr (ToTs '[ZippedStack i]) (ToTs '[ZippedStack o])
l -> Instr (ToTs s) (ToTs (WrappedLambda i o : s))
-> s :-> (WrappedLambda i o : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Value' Instr ('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)))
-> Instr
(ToTs s)
('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)) : ToTs s)
forall {inp :: [T]} {out :: [T]} (i :: T) (o :: T) (s :: [T]).
(inp ~ s, out ~ ('TLambda i o : s), SingI i, SingI o) =>
Value' Instr ('TLambda i o) -> Instr inp out
LAMBDA (Value'
Instr ('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)))
-> Instr
(ToTs s)
('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)) : ToTs s))
-> Value'
Instr ('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)))
-> Instr
(ToTs s)
('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)) : ToTs s)
forall a b. (a -> b) -> a -> b
$ RemFail Instr '[ToT (ZippedStack i)] '[ToT (ZippedStack o)]
-> Value'
Instr ('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)))
forall (inp :: T) (out :: T) (instr :: [T] -> [T] -> *).
(SingI inp, SingI out,
forall (i :: [T]) (o :: [T]). Show (instr i o),
forall (i :: [T]) (o :: [T]). Eq (instr i o),
forall (i :: [T]) (o :: [T]). NFData (instr i o)) =>
RemFail instr '[inp] '[out] -> Value' instr ('TLambda inp out)
VLam (RemFail Instr '[ToT (ZippedStack i)] '[ToT (ZippedStack o)]
-> Value'
Instr ('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o))))
-> RemFail Instr '[ToT (ZippedStack i)] '[ToT (ZippedStack o)]
-> Value'
Instr ('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)))
forall a b. (a -> b) -> a -> b
$ Instr '[ToT (ZippedStack i)] '[ToT (ZippedStack o)]
-> RemFail Instr '[ToT (ZippedStack i)] '[ToT (ZippedStack o)]
forall {k} (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr '[ToT (ZippedStack i)] '[ToT (ZippedStack o)]
Instr (ToTs '[ZippedStack i]) (ToTs '[ZippedStack o])
l)
FI forall (out' :: [T]). Instr (ToTs '[ZippedStack i]) out'
l -> Instr (ToTs s) (ToTs (WrappedLambda i o : s))
-> s :-> (WrappedLambda i o : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Value' Instr ('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)))
-> Instr
(ToTs s)
('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)) : ToTs s)
forall {inp :: [T]} {out :: [T]} (i :: T) (o :: T) (s :: [T]).
(inp ~ s, out ~ ('TLambda i o : s), SingI i, SingI o) =>
Value' Instr ('TLambda i o) -> Instr inp out
LAMBDA (Value'
Instr ('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)))
-> Instr
(ToTs s)
('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)) : ToTs s))
-> Value'
Instr ('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)))
-> Instr
(ToTs s)
('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)) : ToTs s)
forall a b. (a -> b) -> a -> b
$ RemFail Instr '[ToT (ZippedStack i)] '[ToT (ZippedStack o)]
-> Value'
Instr ('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)))
forall (inp :: T) (out :: T) (instr :: [T] -> [T] -> *).
(SingI inp, SingI out,
forall (i :: [T]) (o :: [T]). Show (instr i o),
forall (i :: [T]) (o :: [T]). Eq (instr i o),
forall (i :: [T]) (o :: [T]). NFData (instr i o)) =>
RemFail instr '[inp] '[out] -> Value' instr ('TLambda inp out)
VLam (RemFail Instr '[ToT (ZippedStack i)] '[ToT (ZippedStack o)]
-> Value'
Instr ('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o))))
-> RemFail Instr '[ToT (ZippedStack i)] '[ToT (ZippedStack o)]
-> Value'
Instr ('TLambda (ToT (ZippedStack i)) (ToT (ZippedStack o)))
forall a b. (a -> b) -> a -> b
$ (forall (o' :: [T]). Instr '[ToT (ZippedStack i)] o')
-> RemFail Instr '[ToT (ZippedStack i)] '[ToT (ZippedStack o)]
forall {k} (instr :: k -> k -> *) (i :: k) (o :: k).
(forall (o' :: k). instr i o') -> RemFail instr i o
RfAlwaysFails forall (o' :: [T]). Instr '[ToT (ZippedStack i)] o'
forall (out' :: [T]). Instr (ToTs '[ZippedStack i]) out'
l)
exec :: a : Lambda a b : s :-> b : s
exec :: forall a b (s :: [*]). (a : Lambda a b : s) :-> (b : s)
exec = Instr (ToTs (a : Lambda a b : s)) (ToTs (b : s))
-> (a : Lambda a b : s) :-> (b : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (a : Lambda a b : s)) (ToTs (b : s))
forall {inp :: [T]} {out :: [T]} (t1 :: T) (t2 :: T) (s :: [T]).
(inp ~ (t1 : 'TLambda t1 t2 : s), out ~ (t2 : s)) =>
Instr inp out
EXEC
execute
:: forall i o s.
(Each [KnownList, ZipInstr] [i, o])
=> (WrappedLambda i o : (i ++ s)) :-> (o ++ s)
execute :: forall (i :: [*]) (o :: [*]) (s :: [*]).
Each '[KnownList, ZipInstr] '[i, o] =>
(WrappedLambda i o : (i ++ s)) :-> (o ++ s)
execute = forall (s :: [*]) (i :: [*]) (o :: [*]).
(KnownList i, KnownList o) =>
(i :-> o) -> (i ++ s) :-> (o ++ s)
framed @s (((WrappedLambda i o : i) :-> o)
-> ((WrappedLambda i o : i) ++ s) :-> (o ++ s))
-> ((WrappedLambda i o : i) :-> o)
-> ((WrappedLambda i o : i) ++ s) :-> (o ++ s)
forall a b. (a -> b) -> a -> b
$
(i :-> '[ZippedStack i])
-> (WrappedLambda i o : i) :-> '[WrappedLambda i o, ZippedStack i]
forall a (s :: [*]) (s' :: [*]).
HasCallStack =>
(s :-> s') -> (a : s) :-> (a : s')
dip (forall (s :: [*]). ZipInstr s => s :-> '[ZippedStack s]
zipInstr @i) ((WrappedLambda i o : i) :-> '[WrappedLambda i o, ZippedStack i])
-> ('[WrappedLambda i o, ZippedStack i]
:-> '[ZippedStack i, WrappedLambda i o])
-> (WrappedLambda i o : i) :-> '[ZippedStack i, WrappedLambda i o]
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
# '[WrappedLambda i o, ZippedStack i]
:-> '[ZippedStack i, WrappedLambda i o]
forall a b (s :: [*]). (a : b : s) :-> (b : a : s)
swap ((WrappedLambda i o : i) :-> '[ZippedStack i, WrappedLambda i o])
-> ('[ZippedStack i, WrappedLambda i o] :-> '[ZippedStack o])
-> (WrappedLambda i o : i) :-> '[ZippedStack o]
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
# Instr
(ToTs '[ZippedStack i, WrappedLambda i o]) (ToTs '[ZippedStack o])
-> '[ZippedStack i, WrappedLambda i o] :-> '[ZippedStack o]
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr
(ToTs '[ZippedStack i, WrappedLambda i o]) (ToTs '[ZippedStack o])
forall {inp :: [T]} {out :: [T]} (t1 :: T) (t2 :: T) (s :: [T]).
(inp ~ (t1 : 'TLambda t1 t2 : s), out ~ (t2 : s)) =>
Instr inp out
EXEC ((WrappedLambda i o : i) :-> '[ZippedStack o])
-> ('[ZippedStack o] :-> o) -> (WrappedLambda i o : i) :-> o
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
# forall (s :: [*]). ZipInstr s => '[ZippedStack s] :-> s
unzipInstr @o
where
_example
:: (WrappedLambda [Integer, Natural] [(), ()]) : Integer : Natural : s
:-> () : () : s
_example :: (WrappedLambda '[Integer, Natural] '[(), ()]
: Integer : Natural : s)
:-> (() : () : s)
_example = (WrappedLambda '[Integer, Natural] '[(), ()]
: Integer : Natural : s)
:-> (() : () : s)
forall (i :: [*]) (o :: [*]) (s :: [*]).
Each '[KnownList, ZipInstr] '[i, o] =>
(WrappedLambda i o : (i ++ s)) :-> (o ++ s)
execute
apply
:: forall a b c s. (NiceConstant a, KnownValue b)
=> a : Lambda (a, b) c : s :-> Lambda b c : s
apply :: forall a b c (s :: [*]).
(NiceConstant a, KnownValue b) =>
(a : Lambda (a, b) c : s) :-> (Lambda b c : s)
apply = Instr (ToTs (a : Lambda (a, b) c : s)) (ToTs (Lambda b c : s))
-> (a : Lambda (a, b) c : s) :-> (Lambda b c : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs (a : Lambda (a, b) c : s)) (ToTs (Lambda b c : s))
-> (a : Lambda (a, b) c : s) :-> (Lambda b c : s))
-> Instr (ToTs (a : Lambda (a, b) c : s)) (ToTs (Lambda b c : s))
-> (a : Lambda (a, b) c : s) :-> (Lambda b c : s)
forall a b. (a -> b) -> a -> b
$ ConstantScope (ToT a) =>
Instr
(ToT a : 'TLambda ('TPair (ToT a) (ToT b)) (ToT c) : ToTs s)
('TLambda (ToT b) (ToT c) : ToTs s)
forall {inp :: [T]} {out :: [T]} (a :: T) (b :: T) (c :: T)
(s :: [T]).
(inp ~ (a : 'TLambda ('TPair a b) c : s), out ~ ('TLambda b c : s),
ConstantScope a, SingI b) =>
Instr inp out
APPLY (ConstantScope (ToT a) =>
Instr
(ToT a : 'TLambda ('TPair (ToT a) (ToT b)) (ToT c) : ToTs s)
('TLambda (ToT b) (ToT c) : ToTs s))
-> (NiceConstant a :- ConstantScope (ToT a))
-> Instr
(ToT a : 'TLambda ('TPair (ToT a) (ToT b)) (ToT c) : ToTs s)
('TLambda (ToT b) (ToT c) : ToTs s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NiceConstant a :- ConstantScope (ToT a)
niceConstantEvi @a
applicate
:: forall a b c inp2nd inpTail s.
(NiceConstant a, ZipInstr b, b ~ (inp2nd : inpTail))
=> a : WrappedLambda (a : b) c : s :-> WrappedLambda b c : s
applicate :: forall a (b :: [*]) (c :: [*]) inp2nd (inpTail :: [*]) (s :: [*]).
(NiceConstant a, ZipInstr b, b ~ (inp2nd : inpTail)) =>
(a : WrappedLambda (a : b) c : s) :-> (WrappedLambda b c : s)
applicate = Instr
(ToTs (a : WrappedLambda (a : inp2nd : inpTail) c : s))
(ToTs (WrappedLambda (inp2nd : inpTail) c : s))
-> (a : WrappedLambda (a : inp2nd : inpTail) c : s)
:-> (WrappedLambda (inp2nd : inpTail) c : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr
(ToTs (a : WrappedLambda (a : inp2nd : inpTail) c : s))
(ToTs (WrappedLambda (inp2nd : inpTail) c : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (b :: T) (c :: T)
(s :: [T]).
(inp ~ (a : 'TLambda ('TPair a b) c : s), out ~ ('TLambda b c : s),
ConstantScope a, SingI b) =>
Instr inp out
APPLY (ConstantScope (ToT a) =>
(a : WrappedLambda (a : b) c : s) :-> (WrappedLambda b c : s))
-> (NiceConstant a :- ConstantScope (ToT a))
-> (a : WrappedLambda (a : b) c : s) :-> (WrappedLambda b c : s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NiceConstant a :- ConstantScope (ToT a)
niceConstantEvi @a
dip :: forall a s s'. HasCallStack => (s :-> s') -> (a : s :-> a : s')
dip :: forall a (s :: [*]) (s' :: [*]).
HasCallStack =>
(s :-> s') -> (a : s) :-> (a : s')
dip ((s :-> s') -> Instr (ToTs s) (ToTs s')
forall (inp :: [*]) (out :: [*]).
HasCallStack =>
(inp :-> out) -> Instr (ToTs inp) (ToTs out)
iNonFailingCode -> Instr (ToTs s) (ToTs s')
a) = Instr (ToTs (a : s)) (ToTs (a : s')) -> (a : s) :-> (a : s')
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs s) (ToTs s')
-> Instr (ToT a : ToTs s) (ToT a : ToTs s')
forall (a :: [T]) (c :: [T]) (b :: T).
Instr a c -> Instr (b : a) (b : c)
DIP Instr (ToTs s) (ToTs s')
a)
type ConstraintDIPNLorentz (n :: Peano) (inp :: [Type]) (out :: [Type])
(s :: [Type]) (s' :: [Type]) =
( ConstraintDIPN n (ToTs inp) (ToTs out) (ToTs s) (ToTs s')
, ConstraintDIPN' Type n inp out s s'
, SingI n
)
dipNPeano ::
forall (n :: Peano) (inp :: [Type]) (out :: [Type]) (s :: [Type]) (s' :: [Type]).
( ConstraintDIPNLorentz n inp out s s'
) => s :-> s' -> inp :-> out
dipNPeano :: forall (n :: Peano) (inp :: [*]) (out :: [*]) (s :: [*])
(s' :: [*]).
ConstraintDIPNLorentz n inp out s s' =>
(s :-> s') -> inp :-> out
dipNPeano ((s :-> s') -> Instr (ToTs s) (ToTs s')
forall (inp :: [*]) (out :: [*]).
HasCallStack =>
(inp :-> out) -> Instr (ToTs inp) (ToTs out)
iNonFailingCode -> Instr (ToTs s) (ToTs s')
a) = Instr (ToTs inp) (ToTs out) -> inp :-> out
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (PeanoNatural n
-> Instr (ToTs s) (ToTs s') -> Instr (ToTs inp) (ToTs out)
forall (n :: Peano) (inp :: [T]) (out :: [T]) (s :: [T])
(s' :: [T]).
ConstraintDIPN n inp out s s' =>
PeanoNatural n -> Instr s s' -> Instr inp out
DIPN (forall (n :: Peano). SingI n => PeanoNatural n
toPeanoNatural @n) Instr (ToTs s) (ToTs s')
a)
dipN ::
forall (n :: Nat) (inp :: [Type]) (out :: [Type]) (s :: [Type]) (s' :: [Type]).
( ConstraintDIPNLorentz (ToPeano n) inp out s s'
) => s :-> s' -> inp :-> out
dipN :: forall (n :: Nat) (inp :: [*]) (out :: [*]) (s :: [*]) (s' :: [*]).
ConstraintDIPNLorentz (ToPeano n) inp out s s' =>
(s :-> s') -> inp :-> out
dipN = forall (n :: Peano) (inp :: [*]) (out :: [*]) (s :: [*])
(s' :: [*]).
ConstraintDIPNLorentz n inp out s s' =>
(s :-> s') -> inp :-> out
dipNPeano @(ToPeano n)
where
_example :: '[ Integer, Integer, Integer ] :-> '[ Integer, Integer, Integer, () ]
_example :: '[Integer, Integer, Integer] :-> '[Integer, Integer, Integer, ()]
_example = forall (n :: Nat) (inp :: [*]) (out :: [*]) (s :: [*]) (s' :: [*]).
ConstraintDIPNLorentz (ToPeano n) inp out s s' =>
(s :-> s') -> inp :-> out
dipN @3 '[] :-> '[()]
forall (s :: [*]). s :-> (() : s)
unit
failWith :: forall a s t. NiceConstant a => a : s :-> t
failWith :: forall a (s :: [*]) (t :: [*]). NiceConstant a => (a : s) :-> t
failWith = (forall (out' :: [T]). Instr (ToTs (a : s)) out') -> (a : s) :-> t
forall (inp :: [*]) (out :: [*]).
(forall (out' :: [T]). Instr (ToTs inp) out') -> inp :-> out
FI forall (out' :: [T]). Instr (ToTs (a : s)) out'
forall (a :: T) (s :: [T]) (out :: [T]).
(SingI a, ConstantScope a) =>
Instr (a : s) out
FAILWITH (ConstantScope (ToT a) => (a : s) :-> t)
-> (NiceConstant a :- ConstantScope (ToT a)) -> (a : s) :-> t
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NiceConstant a :- ConstantScope (ToT a)
niceConstantEvi @a
cast :: KnownValue a => (a : s :-> a : s)
cast :: forall a (s :: [*]). KnownValue a => (a : s) :-> (a : s)
cast = Instr (ToTs (a : s)) (ToTs (a : s)) -> (a : s) :-> (a : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (a : s)) (ToTs (a : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ (a : s), out ~ (a : s), SingI a) =>
Instr inp out
CAST
pack
:: forall a s. (NicePackedValue a)
=> a : s :-> Packed a : s
pack :: forall a (s :: [*]).
NicePackedValue a =>
(a : s) :-> (Packed a : s)
pack = Instr (ToTs (a : s)) (ToTs (Packed a : s))
-> (a : s) :-> (Packed a : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs (a : s)) (ToTs (Packed a : s))
-> (a : s) :-> (Packed a : s))
-> Instr (ToTs (a : s)) (ToTs (Packed a : s))
-> (a : s) :-> (Packed a : s)
forall a b. (a -> b) -> a -> b
$ PackedValScope (ToT a) => Instr (ToT a : ToTs s) ('TBytes : ToTs s)
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ (a : s), out ~ ('TBytes : s), PackedValScope a) =>
Instr inp out
PACK (PackedValScope (ToT a) =>
Instr (ToT a : ToTs s) ('TBytes : ToTs s))
-> (NicePackedValue a :- PackedValScope (ToT a))
-> Instr (ToT a : ToTs s) ('TBytes : ToTs s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NicePackedValue a :- PackedValScope (ToT a)
nicePackedValueEvi @a
unpack
:: forall a s. (NiceUnpackedValue a)
=> Packed a : s :-> Maybe a : s
unpack :: forall a (s :: [*]).
NiceUnpackedValue a =>
(Packed a : s) :-> (Maybe a : s)
unpack = Instr (ToTs (Packed a : s)) (ToTs (Maybe a : s))
-> (Packed a : s) :-> (Maybe a : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs (Packed a : s)) (ToTs (Maybe a : s))
-> (Packed a : s) :-> (Maybe a : s))
-> Instr (ToTs (Packed a : s)) (ToTs (Maybe a : s))
-> (Packed a : s) :-> (Maybe a : s)
forall a b. (a -> b) -> a -> b
$ UnpackedValScope (ToT a) =>
Instr ('TBytes : ToTs s) ('TOption (ToT a) : ToTs s)
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ ('TBytes : s), out ~ ('TOption a : s), UnpackedValScope a,
SingI a) =>
Instr inp out
UNPACK (UnpackedValScope (ToT a) =>
Instr ('TBytes : ToTs s) ('TOption (ToT a) : ToTs s))
-> (NiceUnpackedValue a :- UnpackedValScope (ToT a))
-> Instr ('TBytes : ToTs s) ('TOption (ToT a) : ToTs s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NiceUnpackedValue a :- UnpackedValScope (ToT a)
niceUnpackedValueEvi @a
packRaw
:: forall a s. (NicePackedValue a)
=> a : s :-> ByteString : s
packRaw :: forall a (s :: [*]).
NicePackedValue a =>
(a : s) :-> (ByteString : s)
packRaw = Instr (ToTs (a : s)) (ToTs (ByteString : s))
-> (a : s) :-> (ByteString : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs (a : s)) (ToTs (ByteString : s))
-> (a : s) :-> (ByteString : s))
-> Instr (ToTs (a : s)) (ToTs (ByteString : s))
-> (a : s) :-> (ByteString : s)
forall a b. (a -> b) -> a -> b
$ PackedValScope (ToT a) => Instr (ToT a : ToTs s) ('TBytes : ToTs s)
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ (a : s), out ~ ('TBytes : s), PackedValScope a) =>
Instr inp out
PACK (PackedValScope (ToT a) =>
Instr (ToT a : ToTs s) ('TBytes : ToTs s))
-> (NicePackedValue a :- PackedValScope (ToT a))
-> Instr (ToT a : ToTs s) ('TBytes : ToTs s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NicePackedValue a :- PackedValScope (ToT a)
nicePackedValueEvi @a
unpackRaw
:: forall a s. (NiceUnpackedValue a)
=> ByteString : s :-> Maybe a : s
unpackRaw :: forall a (s :: [*]).
NiceUnpackedValue a =>
(ByteString : s) :-> (Maybe a : s)
unpackRaw = Instr (ToTs (ByteString : s)) (ToTs (Maybe a : s))
-> (ByteString : s) :-> (Maybe a : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs (ByteString : s)) (ToTs (Maybe a : s))
-> (ByteString : s) :-> (Maybe a : s))
-> Instr (ToTs (ByteString : s)) (ToTs (Maybe a : s))
-> (ByteString : s) :-> (Maybe a : s)
forall a b. (a -> b) -> a -> b
$ UnpackedValScope (ToT a) =>
Instr ('TBytes : ToTs s) ('TOption (ToT a) : ToTs s)
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ ('TBytes : s), out ~ ('TOption a : s), UnpackedValScope a,
SingI a) =>
Instr inp out
UNPACK (UnpackedValScope (ToT a) =>
Instr ('TBytes : ToTs s) ('TOption (ToT a) : ToTs s))
-> (NiceUnpackedValue a :- UnpackedValScope (ToT a))
-> Instr ('TBytes : ToTs s) ('TOption (ToT a) : ToTs s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NiceUnpackedValue a :- UnpackedValScope (ToT a)
niceUnpackedValueEvi @a
concat :: ConcatOpHs c => c : c : s :-> c : s
concat :: forall c (s :: [*]). ConcatOpHs c => (c : c : s) :-> (c : s)
concat = Instr (ToTs (c : c : s)) (ToTs (c : s)) -> (c : c : s) :-> (c : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (c : c : s)) (ToTs (c : s))
forall {inp :: [T]} {out :: [T]} (c :: T) (s :: [T]).
(inp ~ (c : c : s), out ~ (c : s), ConcatOp c) =>
Instr inp out
CONCAT
concat' :: ConcatOpHs c => List c : s :-> c : s
concat' :: forall c (s :: [*]). ConcatOpHs c => (List c : s) :-> (c : s)
concat' = Instr (ToTs (List c : s)) (ToTs (c : s))
-> (List c : s) :-> (c : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (List c : s)) (ToTs (c : s))
forall {inp :: [T]} {out :: [T]} (c :: T) (s :: [T]).
(inp ~ ('TList c : s), out ~ (c : s), ConcatOp c) =>
Instr inp out
CONCAT'
slice
:: (SliceOpHs c, KnownValue c)
=> Natural : Natural : c : s :-> Maybe c : s
slice :: forall c (s :: [*]).
(SliceOpHs c, KnownValue c) =>
(Natural : Natural : c : s) :-> (Maybe c : s)
slice = Instr (ToTs (Natural : Natural : c : s)) (ToTs (Maybe c : s))
-> (Natural : Natural : c : s) :-> (Maybe c : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (Natural : Natural : c : s)) (ToTs (Maybe c : s))
forall {inp :: [T]} {out :: [T]} (c :: T) (s :: [T]).
(inp ~ ('TNat : 'TNat : c : s), out ~ ('TOption c : s), SliceOp c,
SingI c) =>
Instr inp out
SLICE
isNat :: Integer : s :-> Maybe Natural : s
isNat :: forall (s :: [*]). (Integer : s) :-> (Maybe Natural : s)
isNat = Instr (ToTs (Integer : s)) (ToTs (Maybe Natural : s))
-> (Integer : s) :-> (Maybe Natural : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (Integer : s)) (ToTs (Maybe Natural : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ ('TInt : s), out ~ ('TOption 'TNat : s)) =>
Instr inp out
ISNAT
add
:: ArithOpHs Add n m r
=> n : m : s :-> r : s
add :: forall n m r (s :: [*]).
ArithOpHs Add n m r =>
(n : m : s) :-> (r : s)
add = forall aop n m r (s :: [*]).
ArithOpHs aop n m r =>
(n : m : s) :-> (r : s)
evalArithOpHs @Add
sub
:: ArithOpHs Sub n m r
=> n : m : s :-> r : s
sub :: forall n m r (s :: [*]).
ArithOpHs Sub n m r =>
(n : m : s) :-> (r : s)
sub = forall aop n m r (s :: [*]).
ArithOpHs aop n m r =>
(n : m : s) :-> (r : s)
evalArithOpHs @Sub
rsub
:: ArithOpHs Sub n m r
=> m : n : s :-> r : s
rsub :: forall n m r (s :: [*]).
ArithOpHs Sub n m r =>
(m : n : s) :-> (r : s)
rsub = (m : n : s) :-> (n : m : s)
forall a b (s :: [*]). (a : b : s) :-> (b : a : s)
swap ((m : n : s) :-> (n : m : s))
-> ((n : m : s) :-> (r : s)) -> (m : n : s) :-> (r : s)
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
# (n : m : s) :-> (r : s)
forall n m r (s :: [*]).
ArithOpHs Sub n m r =>
(n : m : s) :-> (r : s)
sub
subMutez :: Mutez : Mutez : s :-> Maybe Mutez : s
subMutez :: forall (s :: [*]). (Mutez : Mutez : s) :-> (Maybe Mutez : s)
subMutez = Instr (ToTs (Mutez : Mutez : s)) (ToTs (Maybe Mutez : s))
-> (Mutez : Mutez : s) :-> (Maybe Mutez : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (Mutez : Mutez : s)) (ToTs (Maybe Mutez : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ ('TMutez : 'TMutez : s), out ~ ('TOption 'TMutez : s)) =>
Instr inp out
SUB_MUTEZ
rsubMutez :: Mutez : Mutez : s :-> Maybe Mutez : s
rsubMutez :: forall (s :: [*]). (Mutez : Mutez : s) :-> (Maybe Mutez : s)
rsubMutez = (Mutez : Mutez : s) :-> (Mutez : Mutez : s)
forall a b (s :: [*]). (a : b : s) :-> (b : a : s)
swap ((Mutez : Mutez : s) :-> (Mutez : Mutez : s))
-> ((Mutez : Mutez : s) :-> (Maybe Mutez : s))
-> (Mutez : Mutez : s) :-> (Maybe Mutez : s)
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
# (Mutez : Mutez : s) :-> (Maybe Mutez : s)
forall (s :: [*]). (Mutez : Mutez : s) :-> (Maybe Mutez : s)
subMutez
mul
:: ArithOpHs Mul n m r
=> n : m : s :-> r : s
mul :: forall n m r (s :: [*]).
ArithOpHs Mul n m r =>
(n : m : s) :-> (r : s)
mul = forall aop n m r (s :: [*]).
ArithOpHs aop n m r =>
(n : m : s) :-> (r : s)
evalArithOpHs @Mul
ediv :: ArithOpHs EDiv n m r
=> n : m : s
:-> r : s
ediv :: forall n m r (s :: [*]).
ArithOpHs EDiv n m r =>
(n : m : s) :-> (r : s)
ediv = forall aop n m r (s :: [*]).
ArithOpHs aop n m r =>
(n : m : s) :-> (r : s)
evalArithOpHs @EDiv
abs :: UnaryArithOpHs Abs n => n : s :-> UnaryArithResHs Abs n : s
abs :: forall n (s :: [*]).
UnaryArithOpHs Abs n =>
(n : s) :-> (UnaryArithResHs Abs n : s)
abs = forall aop n (s :: [*]).
UnaryArithOpHs aop n =>
(n : s) :-> (UnaryArithResHs aop n : s)
evalUnaryArithOpHs @Abs
neg :: UnaryArithOpHs Neg n => n : s :-> UnaryArithResHs Neg n : s
neg :: forall n (s :: [*]).
UnaryArithOpHs Neg n =>
(n : s) :-> (UnaryArithResHs Neg n : s)
neg = forall aop n (s :: [*]).
UnaryArithOpHs aop n =>
(n : s) :-> (UnaryArithResHs aop n : s)
evalUnaryArithOpHs @Neg
lsl
:: ArithOpHs Lsl n m r
=> n : m : s :-> r : s
lsl :: forall n m r (s :: [*]).
ArithOpHs Lsl n m r =>
(n : m : s) :-> (r : s)
lsl = forall aop n m r (s :: [*]).
ArithOpHs aop n m r =>
(n : m : s) :-> (r : s)
evalArithOpHs @Lsl
lsr
:: ArithOpHs Lsr n m r
=> n : m : s :-> r : s
lsr :: forall n m r (s :: [*]).
ArithOpHs Lsr n m r =>
(n : m : s) :-> (r : s)
lsr = forall aop n m r (s :: [*]).
ArithOpHs aop n m r =>
(n : m : s) :-> (r : s)
evalArithOpHs @Lsr
or
:: ArithOpHs Or n m r
=> n : m : s :-> r : s
or :: forall n m r (s :: [*]).
ArithOpHs Or n m r =>
(n : m : s) :-> (r : s)
or = forall aop n m r (s :: [*]).
ArithOpHs aop n m r =>
(n : m : s) :-> (r : s)
evalArithOpHs @Or
and
:: ArithOpHs And n m r
=> n : m : s :-> r : s
and :: forall n m r (s :: [*]).
ArithOpHs And n m r =>
(n : m : s) :-> (r : s)
and = forall aop n m r (s :: [*]).
ArithOpHs aop n m r =>
(n : m : s) :-> (r : s)
evalArithOpHs @And
xor
:: (ArithOpHs Xor n m r)
=> n : m : s :-> r : s
xor :: forall n m r (s :: [*]).
ArithOpHs Xor n m r =>
(n : m : s) :-> (r : s)
xor = forall aop n m r (s :: [*]).
ArithOpHs aop n m r =>
(n : m : s) :-> (r : s)
evalArithOpHs @Xor
not :: UnaryArithOpHs Not n => n : s :-> UnaryArithResHs Not n : s
not :: forall n (s :: [*]).
UnaryArithOpHs Not n =>
(n : s) :-> (UnaryArithResHs Not n : s)
not = forall aop n (s :: [*]).
UnaryArithOpHs aop n =>
(n : s) :-> (UnaryArithResHs aop n : s)
evalUnaryArithOpHs @Not
compare :: NiceComparable n => n : n : s :-> Integer : s
compare :: forall n (s :: [*]).
NiceComparable n =>
(n : n : s) :-> (Integer : s)
compare = Instr (ToTs (n : n : s)) (ToTs (Integer : s))
-> (n : n : s) :-> (Integer : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (n : n : s)) (ToTs (Integer : s))
forall {inp :: [T]} {out :: [T]} (n :: T) (s :: [T]).
(inp ~ (n : n : s), out ~ ('TInt : s), Comparable n, SingI n) =>
Instr inp out
COMPARE
eq0 :: UnaryArithOpHs Eq' n => n : s :-> UnaryArithResHs Eq' n : s
eq0 :: forall n (s :: [*]).
UnaryArithOpHs Eq' n =>
(n : s) :-> (UnaryArithResHs Eq' n : s)
eq0 = forall aop n (s :: [*]).
UnaryArithOpHs aop n =>
(n : s) :-> (UnaryArithResHs aop n : s)
evalUnaryArithOpHs @Eq'
neq0 :: UnaryArithOpHs Neq n => n : s :-> UnaryArithResHs Neq n : s
neq0 :: forall n (s :: [*]).
UnaryArithOpHs Neq n =>
(n : s) :-> (UnaryArithResHs Neq n : s)
neq0 = forall aop n (s :: [*]).
UnaryArithOpHs aop n =>
(n : s) :-> (UnaryArithResHs aop n : s)
evalUnaryArithOpHs @Neq
lt0 :: UnaryArithOpHs Lt n => n : s :-> UnaryArithResHs Lt n : s
lt0 :: forall n (s :: [*]).
UnaryArithOpHs Lt n =>
(n : s) :-> (UnaryArithResHs Lt n : s)
lt0 = forall aop n (s :: [*]).
UnaryArithOpHs aop n =>
(n : s) :-> (UnaryArithResHs aop n : s)
evalUnaryArithOpHs @Lt
gt0 :: UnaryArithOpHs Gt n => n : s :-> UnaryArithResHs Gt n : s
gt0 :: forall n (s :: [*]).
UnaryArithOpHs Gt n =>
(n : s) :-> (UnaryArithResHs Gt n : s)
gt0 = forall aop n (s :: [*]).
UnaryArithOpHs aop n =>
(n : s) :-> (UnaryArithResHs aop n : s)
evalUnaryArithOpHs @Gt
le0 :: UnaryArithOpHs Le n => n : s :-> UnaryArithResHs Le n : s
le0 :: forall n (s :: [*]).
UnaryArithOpHs Le n =>
(n : s) :-> (UnaryArithResHs Le n : s)
le0 = forall aop n (s :: [*]).
UnaryArithOpHs aop n =>
(n : s) :-> (UnaryArithResHs aop n : s)
evalUnaryArithOpHs @Le
ge0 :: UnaryArithOpHs Ge n => n : s :-> UnaryArithResHs Ge n : s
ge0 :: forall n (s :: [*]).
UnaryArithOpHs Ge n =>
(n : s) :-> (UnaryArithResHs Ge n : s)
ge0 = forall aop n (s :: [*]).
UnaryArithOpHs aop n =>
(n : s) :-> (UnaryArithResHs aop n : s)
evalUnaryArithOpHs @Ge
int :: (ToIntegerArithOpHs i) => i : s :-> Integer : s
int :: forall i (s :: [*]).
ToIntegerArithOpHs i =>
(i : s) :-> (Integer : s)
int = (i : s) :-> (Integer : s)
forall n (s :: [*]).
ToIntegerArithOpHs n =>
(n : s) :-> (Integer : s)
evalToIntOpHs
view'
:: forall name ret arg s.
(HasCallStack, KnownSymbol name, KnownValue arg, NiceViewable ret)
=> arg : Address : s :-> Maybe ret : s
view' :: forall (name :: Symbol) ret arg (s :: [*]).
(HasCallStack, KnownSymbol name, KnownValue arg,
NiceViewable ret) =>
(arg : Address : s) :-> (Maybe ret : s)
view' = Instr (ToTs (arg : Address : s)) (ToTs (Maybe ret : s))
-> (arg : Address : s) :-> (Maybe ret : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs (arg : Address : s)) (ToTs (Maybe ret : s))
-> (arg : Address : s) :-> (Maybe ret : s))
-> Instr (ToTs (arg : Address : s)) (ToTs (Maybe ret : s))
-> (arg : Address : s) :-> (Maybe ret : s)
forall a b. (a -> b) -> a -> b
$ ViewName
-> Instr
(ToT arg : 'TAddress : ToTs s) ('TOption (ToT ret) : ToTs s)
forall {inp :: [T]} {out :: [T]} (arg :: T) (ret :: T) (s :: [T]).
(inp ~ (arg : 'TAddress : s), out ~ ('TOption ret : s), SingI arg,
ViewableScope ret) =>
ViewName -> Instr inp out
VIEW (forall (name :: Symbol).
(KnownSymbol name, HasCallStack) =>
ViewName
demoteViewName @name)
(ViewableScope (ToT ret) =>
Instr (ToT arg : 'TAddress : ToTs s) ('TOption (ToT ret) : ToTs s))
-> (NiceViewable ret :- ViewableScope (ToT ret))
-> Instr
(ToT arg : 'TAddress : ToTs s) ('TOption (ToT ret) : ToTs s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NiceViewable a :- ViewableScope (ToT a)
niceViewableEvi @ret
self
:: forall p s.
(NiceParameterFull p, ForbidExplicitDefaultEntrypoint p, IsNotInView)
=> s :-> ContractRef p : s
self :: forall p (s :: [*]).
(NiceParameterFull p, ForbidExplicitDefaultEntrypoint p,
IsNotInView) =>
s :-> (ContractRef p : s)
self = Instr (ToTs s) (ToTs (ContractRef p : s))
-> s :-> (ContractRef p : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (SomeEntrypointCallT (ToT p)
-> Instr (ToTs s) ('TContract (ToT p) : ToTs s)
forall {inp :: [T]} {out :: [T]} (arg :: T) (s :: [T]).
(inp ~ s, out ~ ('TContract arg : s), ParameterScope arg,
IsNotInView) =>
SomeEntrypointCallT arg -> Instr inp out
SELF (SomeEntrypointCallT (ToT p)
-> Instr (ToTs s) ('TContract (ToT p) : ToTs s))
-> SomeEntrypointCallT (ToT p)
-> Instr (ToTs s) ('TContract (ToT p) : ToTs s)
forall a b. (a -> b) -> a -> b
$ forall cp.
(NiceParameter cp, ForbidExplicitDefaultEntrypoint cp) =>
SomeEntrypointCall cp
sepcCallRootChecked @p) (ParameterScope (ToT p) => s :-> (ContractRef p : s))
-> (((SingI (ToT p), WellTyped (ToT p),
FailOnOperationFound (ContainsOp (ToT p)),
FailOnNestedBigMapsFound (ContainsNestedBigMaps (ToT p))),
KnownValue p)
:- ParameterScope (ToT p))
-> s :-> (ContractRef p : s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NiceParameter a :- ParameterScope (ToT a)
niceParameterEvi @p
selfCalling
:: forall p mname s.
(NiceParameterFull p, IsNotInView)
=> EntrypointRef mname
-> s :-> ContractRef (GetEntrypointArgCustom p mname) : s
selfCalling :: forall p (mname :: Maybe Symbol) (s :: [*]).
(NiceParameterFull p, IsNotInView) =>
EntrypointRef mname
-> s :-> (ContractRef (GetEntrypointArgCustom p mname) : s)
selfCalling EntrypointRef mname
epRef = Instr
(ToTs s) (ToTs (ContractRef (GetEntrypointArgCustom p mname) : s))
-> s :-> (ContractRef (GetEntrypointArgCustom p mname) : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr
(ToTs s) (ToTs (ContractRef (GetEntrypointArgCustom p mname) : s))
-> s :-> (ContractRef (GetEntrypointArgCustom p mname) : s))
-> Instr
(ToTs s) (ToTs (ContractRef (GetEntrypointArgCustom p mname) : s))
-> s :-> (ContractRef (GetEntrypointArgCustom p mname) : s)
forall a b. (a -> b) -> a -> b
$
(((SingI (ToT p), WellTyped (ToT p),
FailOnOperationFound (ContainsOp (ToT p)),
FailOnNestedBigMapsFound (ContainsNestedBigMaps (ToT p))),
KnownValue p)
:- ParameterScope (ToT p))
-> (ParameterScope (ToT p) =>
Instr
(ToTs s)
('TContract (ToT (GetEntrypointArgCustom p mname)) : ToTs s))
-> Instr
(ToTs s)
('TContract (ToT (GetEntrypointArgCustom p mname)) : ToTs s)
forall (c :: Constraint) e r. HasDict c e => e -> (c => r) -> r
withDict (forall a. NiceParameter a :- ParameterScope (ToT a)
niceParameterEvi @p) ((ParameterScope (ToT p) =>
Instr
(ToTs s)
('TContract (ToT (GetEntrypointArgCustom p mname)) : ToTs s))
-> Instr
(ToTs s)
('TContract (ToT (GetEntrypointArgCustom p mname)) : ToTs s))
-> (ParameterScope (ToT p) =>
Instr
(ToTs s)
('TContract (ToT (GetEntrypointArgCustom p mname)) : ToTs s))
-> Instr
(ToTs s)
('TContract (ToT (GetEntrypointArgCustom p mname)) : ToTs s)
forall a b. (a -> b) -> a -> b
$
case forall cp (mname :: Maybe Symbol).
ParameterDeclaresEntrypoints cp =>
EntrypointRef mname
-> EntrypointCall cp (GetEntrypointArgCustom cp mname)
parameterEntrypointCallCustom @p EntrypointRef mname
epRef of
epc :: EntrypointCall p (GetEntrypointArgCustom p mname)
epc@EntrypointCall{} -> SomeEntrypointCallT (ToT (GetEntrypointArgCustom p mname))
-> Instr
(ToTs s)
('TContract (ToT (GetEntrypointArgCustom p mname)) : ToTs s)
forall {inp :: [T]} {out :: [T]} (arg :: T) (s :: [T]).
(inp ~ s, out ~ ('TContract arg : s), ParameterScope arg,
IsNotInView) =>
SomeEntrypointCallT arg -> Instr inp out
SELF (EntrypointCall p (GetEntrypointArgCustom p mname)
-> SomeEntrypointCallT (ToT (GetEntrypointArgCustom p mname))
forall (arg :: T) (param :: T).
ParameterScope param =>
EntrypointCallT param arg -> SomeEntrypointCallT arg
SomeEpc EntrypointCall p (GetEntrypointArgCustom p mname)
epc)
contract
:: forall p vd addr s.
( NiceParameterFull p, ForbidExplicitDefaultEntrypoint p
, ToTAddress_ p vd addr
)
=> addr : s :-> Maybe (ContractRef p) : s
contract :: forall p vd addr (s :: [*]).
(NiceParameterFull p, ForbidExplicitDefaultEntrypoint p,
ToTAddress_ p vd addr) =>
(addr : s) :-> (Maybe (ContractRef p) : s)
contract = Instr (ToTs (addr : s)) (ToTs (Maybe (ContractRef p) : s))
-> (addr : s) :-> (Maybe (ContractRef p) : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (EpName
-> Instr
('TAddress : ToTs s) ('TOption ('TContract (ToT p)) : ToTs s)
forall {inp :: [T]} {out :: [T]} (p :: T) (s :: [T]).
(inp ~ ('TAddress : s), out ~ ('TOption ('TContract p) : s),
ParameterScope p) =>
EpName -> Instr inp out
CONTRACT EpName
epName) (ParameterScope (ToT p) =>
(addr : s) :-> (Maybe (ContractRef p) : s))
-> (NiceParameter p :- ParameterScope (ToT p))
-> (addr : s) :-> (Maybe (ContractRef p) : s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NiceParameter a :- ParameterScope (ToT a)
niceParameterEvi @p
where
epName :: EpName
epName = SomeEntrypointCallT (ToT p) -> EpName
forall (arg :: T). SomeEntrypointCallT arg -> EpName
sepcName (forall cp.
(NiceParameter cp, ForbidExplicitDefaultEntrypoint cp) =>
SomeEntrypointCall cp
sepcCallRootChecked @p)
contractCalling
:: forall cp epRef epArg addr vd s.
(HasEntrypointArg cp epRef epArg, ToTAddress_ cp vd addr)
=> epRef
-> addr : s :-> Maybe (ContractRef epArg) : s
contractCalling :: forall cp epRef epArg addr vd (s :: [*]).
(HasEntrypointArg cp epRef epArg, ToTAddress_ cp vd addr) =>
epRef -> (addr : s) :-> (Maybe (ContractRef epArg) : s)
contractCalling epRef
epRef = Instr (ToTs (addr : s)) (ToTs (Maybe (ContractRef epArg) : s))
-> (addr : s) :-> (Maybe (ContractRef epArg) : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs (addr : s)) (ToTs (Maybe (ContractRef epArg) : s))
-> (addr : s) :-> (Maybe (ContractRef epArg) : s))
-> Instr (ToTs (addr : s)) (ToTs (Maybe (ContractRef epArg) : s))
-> (addr : s) :-> (Maybe (ContractRef epArg) : s)
forall a b. (a -> b) -> a -> b
$
case forall {k} (cp :: k) name arg.
HasEntrypointArg cp name arg =>
name -> (Dict (ParameterScope (ToT arg)), EpName)
forall cp name arg.
HasEntrypointArg cp name arg =>
name -> (Dict (ParameterScope (ToT arg)), EpName)
useHasEntrypointArg @cp @epRef @epArg epRef
epRef of
(Dict (ParameterScope (ToT epArg))
Dict, EpName
epName) -> EpName
-> Instr
('TAddress : ToTs s) ('TOption ('TContract (ToT epArg)) : ToTs s)
forall {inp :: [T]} {out :: [T]} (p :: T) (s :: [T]).
(inp ~ ('TAddress : s), out ~ ('TOption ('TContract p) : s),
ParameterScope p) =>
EpName -> Instr inp out
CONTRACT EpName
epName
unsafeContractCalling
:: forall arg s.
(NiceParameter arg)
=> EpName
-> Address : s :-> Maybe (ContractRef arg) : s
unsafeContractCalling :: forall arg (s :: [*]).
NiceParameter arg =>
EpName -> (Address : s) :-> (Maybe (ContractRef arg) : s)
unsafeContractCalling EpName
epName = TrustEpName -> (Address : s) :-> (Maybe (ContractRef arg) : s)
forall cp epRef epArg addr vd (s :: [*]).
(HasEntrypointArg cp epRef epArg, ToTAddress_ cp vd addr) =>
epRef -> (addr : s) :-> (Maybe (ContractRef epArg) : s)
contractCalling (EpName -> TrustEpName
TrustEpName EpName
epName)
runFutureContract
:: forall p s. (NiceParameter p)
=> FutureContract p : s :-> Maybe (ContractRef p) : s
runFutureContract :: forall p (s :: [*]).
NiceParameter p =>
(FutureContract p : s) :-> (Maybe (ContractRef p) : s)
runFutureContract =
Instr (ToTs (FutureContract p : s)) (ToTs (EpAddress : s))
-> (FutureContract p : s) :-> (EpAddress : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (FutureContract p : s)) (ToTs (EpAddress : s))
forall (inp :: [T]). Instr inp inp
Nop ((FutureContract p : s) :-> (EpAddress : s))
-> ((EpAddress : s) :-> (Maybe (ContractRef p) : s))
-> (FutureContract p : s) :-> (Maybe (ContractRef p) : s)
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
# (EpAddress : s) :-> (Maybe (ContractRef p) : s)
forall p (s :: [*]).
NiceParameter p =>
(EpAddress : s) :-> (Maybe (ContractRef p) : s)
epAddressToContract
epAddressToContract
:: forall p s. (NiceParameter p)
=> EpAddress : s :-> Maybe (ContractRef p) : s
epAddressToContract :: forall p (s :: [*]).
NiceParameter p =>
(EpAddress : s) :-> (Maybe (ContractRef p) : s)
epAddressToContract =
Instr (ToTs (EpAddress : s)) (ToTs (Maybe (ContractRef p) : s))
-> (EpAddress : s) :-> (Maybe (ContractRef p) : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (EpName
-> Instr
('TAddress : ToTs s) ('TOption ('TContract (ToT p)) : ToTs s)
forall {inp :: [T]} {out :: [T]} (p :: T) (s :: [T]).
(inp ~ ('TAddress : s), out ~ ('TOption ('TContract p) : s),
ParameterScope p) =>
EpName -> Instr inp out
CONTRACT EpName
DefEpName) (ParameterScope (ToT p) =>
(EpAddress : s) :-> (Maybe (ContractRef p) : s))
-> (NiceParameter p :- ParameterScope (ToT p))
-> (EpAddress : s) :-> (Maybe (ContractRef p) : s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NiceParameter a :- ParameterScope (ToT a)
niceParameterEvi @p
transferTokens
:: forall p s. (NiceParameter p, IsNotInView)
=> p : Mutez : ContractRef p : s :-> Operation : s
transferTokens :: forall p (s :: [*]).
(NiceParameter p, IsNotInView) =>
(p : Mutez : ContractRef p : s) :-> (Operation : s)
transferTokens = Instr (ToTs (p : Mutez : ContractRef p : s)) (ToTs (Operation : s))
-> (p : Mutez : ContractRef p : s) :-> (Operation : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr
(ToTs (p : Mutez : ContractRef p : s)) (ToTs (Operation : s))
-> (p : Mutez : ContractRef p : s) :-> (Operation : s))
-> Instr
(ToTs (p : Mutez : ContractRef p : s)) (ToTs (Operation : s))
-> (p : Mutez : ContractRef p : s) :-> (Operation : s)
forall a b. (a -> b) -> a -> b
$ ParameterScope (ToT p) =>
Instr
(ToT p : 'TMutez : 'TContract (ToT p) : ToTs s)
('TOperation : ToTs s)
forall {inp :: [T]} {out :: [T]} (p :: T) (s :: [T]).
(inp ~ (p : 'TMutez : 'TContract p : s), out ~ ('TOperation : s),
ParameterScope p, IsNotInView) =>
Instr inp out
TRANSFER_TOKENS (ParameterScope (ToT p) =>
Instr
(ToT p : 'TMutez : 'TContract (ToT p) : ToTs s)
('TOperation : ToTs s))
-> (NiceParameter p :- ParameterScope (ToT p))
-> Instr
(ToT p : 'TMutez : 'TContract (ToT p) : ToTs s)
('TOperation : ToTs s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NiceParameter a :- ParameterScope (ToT a)
niceParameterEvi @p
setDelegate :: IsNotInView => Maybe KeyHash : s :-> Operation : s
setDelegate :: forall (s :: [*]).
IsNotInView =>
(Maybe KeyHash : s) :-> (Operation : s)
setDelegate = Instr (ToTs (Maybe KeyHash : s)) (ToTs (Operation : s))
-> (Maybe KeyHash : s) :-> (Operation : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (Maybe KeyHash : s)) (ToTs (Operation : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ ('TOption 'TKeyHash : s), out ~ ('TOperation : s),
IsNotInView) =>
Instr inp out
SET_DELEGATE
createContract
:: forall p g vd s. IsNotInView
=> Contract p g vd
-> Maybe KeyHash : Mutez : g : s
:-> Operation : TAddress p vd : s
createContract :: forall p g vd (s :: [*]).
IsNotInView =>
Contract p g vd
-> (Maybe KeyHash : Mutez : g : s)
:-> (Operation : TAddress p vd : s)
createContract cntrc :: Contract p g vd
cntrc@Contract{} =
Instr
(ToTs (Maybe KeyHash : Mutez : g : s))
(ToTs (Operation : TAddress p vd : s))
-> (Maybe KeyHash : Mutez : g : s)
:-> (Operation : TAddress p vd : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr
(ToTs (Maybe KeyHash : Mutez : g : s))
(ToTs (Operation : TAddress p vd : s))
-> (Maybe KeyHash : Mutez : g : s)
:-> (Operation : TAddress p vd : s))
-> Instr
(ToTs (Maybe KeyHash : Mutez : g : s))
(ToTs (Operation : TAddress p vd : s))
-> (Maybe KeyHash : Mutez : g : s)
:-> (Operation : TAddress p vd : s)
forall a b. (a -> b) -> a -> b
$ Contract' Instr (ToT p) (ToT g)
-> Instr
('TOption 'TKeyHash : 'TMutez : ToT g : ToTs s)
('TOperation : 'TAddress : ToTs s)
forall {inp :: [T]} {out :: [T]} (p :: T) (g :: T) (s :: [T]).
(inp ~ ('TOption 'TKeyHash : 'TMutez : g : s),
out ~ ('TOperation : 'TAddress : s), ParameterScope p,
StorageScope g, IsNotInView) =>
Contract' Instr p g -> Instr inp out
CREATE_CONTRACT (Contract p g vd -> Contract' Instr (ToT p) (ToT g)
forall cp st vd. Contract cp st vd -> Contract (ToT cp) (ToT st)
toMichelsonContract Contract p g vd
cntrc)
(ParameterScope (ToT p) =>
Instr
('TOption 'TKeyHash : 'TMutez : ToT g : ToTs s)
('TOperation : 'TAddress : ToTs s))
-> (NiceParameter p :- ParameterScope (ToT p))
-> Instr
('TOption 'TKeyHash : 'TMutez : ToT g : ToTs s)
('TOperation : 'TAddress : ToTs s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NiceParameter a :- ParameterScope (ToT a)
niceParameterEvi @p
(StorageScope (ToT g) =>
Instr
('TOption 'TKeyHash : 'TMutez : ToT g : ToTs s)
('TOperation : 'TAddress : ToTs s))
-> (NiceStorage g :- StorageScope (ToT g))
-> Instr
('TOption 'TKeyHash : 'TMutez : ToT g : ToTs s)
('TOperation : 'TAddress : ToTs s)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall a. NiceStorage a :- StorageScope (ToT a)
niceStorageEvi @g
implicitAccount :: KeyHash : s :-> ContractRef () : s
implicitAccount :: forall (s :: [*]). (KeyHash : s) :-> (ContractRef () : s)
implicitAccount = Instr (ToTs (KeyHash : s)) (ToTs (ContractRef () : s))
-> (KeyHash : s) :-> (ContractRef () : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (KeyHash : s)) (ToTs (ContractRef () : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ ('TKeyHash : s), out ~ ('TContract 'TUnit : s)) =>
Instr inp out
IMPLICIT_ACCOUNT
now :: s :-> Timestamp : s
now :: forall (s :: [*]). s :-> (Timestamp : s)
now = Instr (ToTs s) (ToTs (Timestamp : s)) -> s :-> (Timestamp : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (Timestamp : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ s, out ~ ('TTimestamp : s)) =>
Instr inp out
NOW
minBlockTime :: s :-> Natural : s
minBlockTime :: forall (s :: [*]). s :-> (Natural : s)
minBlockTime = Instr (ToTs s) (ToTs (Natural : s)) -> s :-> (Natural : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (Natural : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ s, out ~ ('TNat : s)) =>
Instr inp out
MIN_BLOCK_TIME
amount :: s :-> Mutez : s
amount :: forall (s :: [*]). s :-> (Mutez : s)
amount = Instr (ToTs s) (ToTs (Mutez : s)) -> s :-> (Mutez : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (Mutez : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ s, out ~ ('TMutez : s)) =>
Instr inp out
AMOUNT
balance :: s :-> Mutez : s
balance :: forall (s :: [*]). s :-> (Mutez : s)
balance = Instr (ToTs s) (ToTs (Mutez : s)) -> s :-> (Mutez : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (Mutez : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ s, out ~ ('TMutez : s)) =>
Instr inp out
BALANCE
votingPower :: KeyHash : s :-> Natural : s
votingPower :: forall (s :: [*]). (KeyHash : s) :-> (Natural : s)
votingPower = Instr (ToTs (KeyHash : s)) (ToTs (Natural : s))
-> (KeyHash : s) :-> (Natural : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (KeyHash : s)) (ToTs (Natural : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ ('TKeyHash : s), out ~ ('TNat : s)) =>
Instr inp out
VOTING_POWER
totalVotingPower :: s :-> Natural : s
totalVotingPower :: forall (s :: [*]). s :-> (Natural : s)
totalVotingPower = Instr (ToTs s) (ToTs (Natural : s)) -> s :-> (Natural : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (Natural : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ s, out ~ ('TNat : s)) =>
Instr inp out
TOTAL_VOTING_POWER
checkSignature :: BytesLike bs => PublicKey : TSignature bs : bs : s :-> Bool : s
checkSignature :: forall bs (s :: [*]).
BytesLike bs =>
(PublicKey : TSignature bs : bs : s) :-> (Bool : s)
checkSignature = Instr (ToTs (PublicKey : TSignature bs : bs : s)) (ToTs (Bool : s))
-> (PublicKey : TSignature bs : bs : s) :-> (Bool : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (PublicKey : TSignature bs : bs : s)) (ToTs (Bool : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ ('TKey : 'TSignature : 'TBytes : s), out ~ ('TBool : s)) =>
Instr inp out
CHECK_SIGNATURE
sha256 :: BytesLike bs => bs : s :-> Hash Sha256 bs : s
sha256 :: forall bs (s :: [*]).
BytesLike bs =>
(bs : s) :-> (Hash Sha256 bs : s)
sha256 = Instr (ToTs (bs : s)) (ToTs (Hash Sha256 bs : s))
-> (bs : s) :-> (Hash Sha256 bs : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (bs : s)) (ToTs (Hash Sha256 bs : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ ('TBytes : s), out ~ ('TBytes : s)) =>
Instr inp out
SHA256
sha512 :: BytesLike bs => bs : s :-> Hash Sha512 bs : s
sha512 :: forall bs (s :: [*]).
BytesLike bs =>
(bs : s) :-> (Hash Sha512 bs : s)
sha512 = Instr (ToTs (bs : s)) (ToTs (Hash Sha512 bs : s))
-> (bs : s) :-> (Hash Sha512 bs : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (bs : s)) (ToTs (Hash Sha512 bs : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ ('TBytes : s), out ~ ('TBytes : s)) =>
Instr inp out
SHA512
blake2B :: BytesLike bs => bs : s :-> Hash Blake2b bs : s
blake2B :: forall bs (s :: [*]).
BytesLike bs =>
(bs : s) :-> (Hash Blake2b bs : s)
blake2B = Instr (ToTs (bs : s)) (ToTs (Hash Blake2b bs : s))
-> (bs : s) :-> (Hash Blake2b bs : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (bs : s)) (ToTs (Hash Blake2b bs : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ ('TBytes : s), out ~ ('TBytes : s)) =>
Instr inp out
BLAKE2B
sha3 :: BytesLike bs => bs : s :-> Hash Sha3 bs : s
sha3 :: forall bs (s :: [*]).
BytesLike bs =>
(bs : s) :-> (Hash Sha3 bs : s)
sha3 = Instr (ToTs (bs : s)) (ToTs (Hash Sha3 bs : s))
-> (bs : s) :-> (Hash Sha3 bs : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (bs : s)) (ToTs (Hash Sha3 bs : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ ('TBytes : s), out ~ ('TBytes : s)) =>
Instr inp out
SHA3
keccak :: BytesLike bs => bs : s :-> Hash Keccak bs : s
keccak :: forall bs (s :: [*]).
BytesLike bs =>
(bs : s) :-> (Hash Keccak bs : s)
keccak = Instr (ToTs (bs : s)) (ToTs (Hash Keccak bs : s))
-> (bs : s) :-> (Hash Keccak bs : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (bs : s)) (ToTs (Hash Keccak bs : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ ('TBytes : s), out ~ ('TBytes : s)) =>
Instr inp out
KECCAK
hashKey :: PublicKey : s :-> KeyHash : s
hashKey :: forall (s :: [*]). (PublicKey : s) :-> (KeyHash : s)
hashKey = Instr (ToTs (PublicKey : s)) (ToTs (KeyHash : s))
-> (PublicKey : s) :-> (KeyHash : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (PublicKey : s)) (ToTs (KeyHash : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ ('TKey : s), out ~ ('TKeyHash : s)) =>
Instr inp out
HASH_KEY
pairingCheck :: [(Bls12381G1, Bls12381G2)] : s :-> Bool : s
pairingCheck :: forall (s :: [*]). ([(Bls12381G1, Bls12381G2)] : s) :-> (Bool : s)
pairingCheck = Instr (ToTs ([(Bls12381G1, Bls12381G2)] : s)) (ToTs (Bool : s))
-> ([(Bls12381G1, Bls12381G2)] : s) :-> (Bool : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs ([(Bls12381G1, Bls12381G2)] : s)) (ToTs (Bool : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ ('TList ('TPair 'TBls12381G1 'TBls12381G2) : s),
out ~ ('TBool : s)) =>
Instr inp out
PAIRING_CHECK
{-# WARNING source
"Using `source` is considered a bad practice.\n\
\ Consider using `sender` instead until further investigation" #-}
source :: s :-> Address : s
source :: forall (s :: [*]). s :-> (Address : s)
source = Instr (ToTs s) (ToTs (Address : s)) -> s :-> (Address : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (Address : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ s, out ~ ('TAddress : s)) =>
Instr inp out
SOURCE
sender :: s :-> Address : s
sender :: forall (s :: [*]). s :-> (Address : s)
sender = Instr (ToTs s) (ToTs (Address : s)) -> s :-> (Address : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (Address : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ s, out ~ ('TAddress : s)) =>
Instr inp out
SENDER
address :: ContractRef a : s :-> Address : s
address :: forall a (s :: [*]). (ContractRef a : s) :-> (Address : s)
address = Instr (ToTs (ContractRef a : s)) (ToTs (Address : s))
-> (ContractRef a : s) :-> (Address : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (ContractRef a : s)) (ToTs (Address : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ ('TContract a : s), out ~ ('TAddress : s)) =>
Instr inp out
ADDRESS
chainId :: s :-> ChainId : s
chainId :: forall (s :: [*]). s :-> (ChainId : s)
chainId = Instr (ToTs s) (ToTs (ChainId : s)) -> s :-> (ChainId : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (ChainId : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ s, out ~ ('TChainId : s)) =>
Instr inp out
CHAIN_ID
level :: s :-> Natural : s
level :: forall (s :: [*]). s :-> (Natural : s)
level = Instr (ToTs s) (ToTs (Natural : s)) -> s :-> (Natural : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (Natural : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ s, out ~ ('TNat : s)) =>
Instr inp out
LEVEL
selfAddress :: s :-> Address : s
selfAddress :: forall (s :: [*]). s :-> (Address : s)
selfAddress = Instr (ToTs s) (ToTs (Address : s)) -> s :-> (Address : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs s) (ToTs (Address : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ s, out ~ ('TAddress : s)) =>
Instr inp out
SELF_ADDRESS
never :: Never : s :-> s'
never :: forall (s :: [*]) (s' :: [*]). (Never : s) :-> s'
never = (forall (out' :: [T]). Instr (ToTs (Never : s)) out')
-> (Never : s) :-> s'
forall (inp :: [*]) (out :: [*]).
(forall (out' :: [T]). Instr (ToTs inp) out') -> inp :-> out
FI forall (out' :: [T]). Instr (ToTs (Never : s)) out'
forall (s :: [T]) (out :: [T]). Instr ('TNever : s) out
NEVER
ticket :: (NiceComparable a) => a : Natural : s :-> Ticket a : s
ticket :: forall a (s :: [*]).
NiceComparable a =>
(a : Natural : s) :-> (Ticket a : s)
ticket = Instr (ToTs (a : Natural : s)) (ToTs (Ticket a : s))
-> (a : Natural : s) :-> (Ticket a : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (a : Natural : s)) (ToTs (Ticket a : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ (a : 'TNat : s), out ~ ('TTicket a : s), Comparable a) =>
Instr inp out
TICKET
readTicket :: Ticket a : s :-> ReadTicket a : Ticket a : s
readTicket :: forall a (s :: [*]).
(Ticket a : s) :-> (ReadTicket a : Ticket a : s)
readTicket = Instr (ToTs (Ticket a : s)) (ToTs (ReadTicket a : Ticket a : s))
-> (Ticket a : s) :-> (ReadTicket a : Ticket a : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr (ToTs (Ticket a : s)) (ToTs (ReadTicket a : Ticket a : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ ('TTicket a : s),
out ~ (RightComb '[ 'TAddress, a, 'TNat] : 'TTicket a : s)) =>
Instr inp out
READ_TICKET
splitTicket :: Ticket a : (Natural, Natural) : s :-> Maybe (Ticket a, Ticket a) : s
splitTicket :: forall a (s :: [*]).
(Ticket a : (Natural, Natural) : s)
:-> (Maybe (Ticket a, Ticket a) : s)
splitTicket = Instr
(ToTs (Ticket a : (Natural, Natural) : s))
(ToTs (Maybe (Ticket a, Ticket a) : s))
-> (Ticket a : (Natural, Natural) : s)
:-> (Maybe (Ticket a, Ticket a) : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr
(ToTs (Ticket a : (Natural, Natural) : s))
(ToTs (Maybe (Ticket a, Ticket a) : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ ('TTicket a : 'TPair 'TNat 'TNat : s),
out ~ ('TOption ('TPair ('TTicket a) ('TTicket a)) : s)) =>
Instr inp out
SPLIT_TICKET
splitTicketNamed
:: forall n1 n2 a s.
Ticket a : (n1 :! Natural, n2 :! Natural) : s
:-> Maybe (n1 :! Ticket a, n2 :! Ticket a) : s
splitTicketNamed :: forall (n1 :: Symbol) (n2 :: Symbol) a (s :: [*]).
(Ticket a : (n1 :! Natural, n2 :! Natural) : s)
:-> (Maybe (n1 :! Ticket a, n2 :! Ticket a) : s)
splitTicketNamed = Instr
(ToTs (Ticket a : (n1 :! Natural, n2 :! Natural) : s))
(ToTs (Maybe (n1 :! Ticket a, n2 :! Ticket a) : s))
-> (Ticket a : (n1 :! Natural, n2 :! Natural) : s)
:-> (Maybe (n1 :! Ticket a, n2 :! Ticket a) : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr
(ToTs (Ticket a : (n1 :! Natural, n2 :! Natural) : s))
(ToTs (Maybe (n1 :! Ticket a, n2 :! Ticket a) : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ ('TTicket a : 'TPair 'TNat 'TNat : s),
out ~ ('TOption ('TPair ('TTicket a) ('TTicket a)) : s)) =>
Instr inp out
SPLIT_TICKET
joinTickets :: (Ticket a, Ticket a) : s :-> Maybe (Ticket a) : s
joinTickets :: forall a (s :: [*]).
((Ticket a, Ticket a) : s) :-> (Maybe (Ticket a) : s)
joinTickets = Instr
(ToTs ((Ticket a, Ticket a) : s)) (ToTs (Maybe (Ticket a) : s))
-> ((Ticket a, Ticket a) : s) :-> (Maybe (Ticket a) : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr
(ToTs ((Ticket a, Ticket a) : s)) (ToTs (Maybe (Ticket a) : s))
forall {inp :: [T]} {out :: [T]} (a :: T) (s :: [T]).
(inp ~ ('TPair ('TTicket a) ('TTicket a) : s),
out ~ ('TOption ('TTicket a) : s)) =>
Instr inp out
JOIN_TICKETS
openChest :: ChestKey : Chest : Natural : s :-> OpenChest : s
openChest :: forall (s :: [*]).
(ChestKey : Chest : Natural : s) :-> (OpenChest : s)
openChest = Instr
(ToTs (ChestKey : Chest : Natural : s)) (ToTs (OpenChest : s))
-> (ChestKey : Chest : Natural : s) :-> (OpenChest : s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I Instr
(ToTs (ChestKey : Chest : Natural : s)) (ToTs (OpenChest : s))
forall {inp :: [T]} {out :: [T]} (s :: [T]).
(inp ~ ('TChestKey : 'TChest : 'TNat : s),
out ~ ('TOr 'TBytes 'TBool : s)) =>
Instr inp out
OPEN_CHEST
framed
:: forall s i o.
(KnownList i, KnownList o)
=> (i :-> o) -> ((i ++ s) :-> (o ++ s))
framed :: forall (s :: [*]) (i :: [*]) (o :: [*]).
(KnownList i, KnownList o) =>
(i :-> o) -> (i ++ s) :-> (o ++ s)
framed ((i :-> o) -> Instr (ToTs i) (ToTs o)
forall (inp :: [*]) (out :: [*]).
HasCallStack =>
(inp :-> out) -> Instr (ToTs inp) (ToTs out)
iNonFailingCode -> Instr (ToTs i) (ToTs o)
i) =
Instr (ToTs (i ++ s)) (ToTs (o ++ s)) -> (i ++ s) :-> (o ++ s)
forall (inp :: [*]) (out :: [*]).
Instr (ToTs inp) (ToTs out) -> inp :-> out
I (Instr (ToTs (i ++ s)) (ToTs (o ++ s)) -> (i ++ s) :-> (o ++ s))
-> Instr (ToTs (i ++ s)) (ToTs (o ++ s)) -> (i ++ s) :-> (o ++ s)
forall a b. (a -> b) -> a -> b
$ Proxy (ToTs s)
-> Instr (ToTs i) (ToTs o)
-> Instr (ToTs i ++ ToTs s) (ToTs o ++ ToTs s)
forall (a :: [T]) (b :: [T]) (s :: [T]).
(KnownList a, KnownList b) =>
Proxy s -> Instr a b -> Instr (a ++ s) (b ++ s)
FrameInstr (forall {t :: [T]}. Proxy t
forall {k} (t :: k). Proxy t
Proxy @(ToTs s)) Instr (ToTs i) (ToTs o)
i
(KnownList (ToTs i) => Instr (ToTs (i ++ s)) (ToTs (o ++ s)))
-> (KnownList i :- KnownList (ToTs i))
-> Instr (ToTs (i ++ s)) (ToTs (o ++ s))
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall (s :: [*]). KnownList s :- KnownList (ToTs s)
totsKnownLemma @i
(KnownList (ToTs o) => Instr (ToTs (i ++ s)) (ToTs (o ++ s)))
-> (KnownList o :- KnownList (ToTs o))
-> Instr (ToTs (i ++ s)) (ToTs (o ++ s))
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall (s :: [*]). KnownList s :- KnownList (ToTs s)
totsKnownLemma @o
((ToTs (i ++ s) ~ (ToTs i ++ ToTs s)) =>
Instr (ToTs (i ++ s)) (ToTs (o ++ s)))
-> Dict (ToTs (i ++ s) ~ (ToTs i ++ ToTs s))
-> Instr (ToTs (i ++ s)) (ToTs (o ++ s))
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall (a :: [*]) (b :: [*]).
KnownList a =>
Dict (ToTs (a ++ b) ~ (ToTs a ++ ToTs b))
totsAppendLemma @i @s
((ToTs (o ++ s) ~ (ToTs o ++ ToTs s)) =>
Instr (ToTs (i ++ s)) (ToTs (o ++ s)))
-> Dict (ToTs (o ++ s) ~ (ToTs o ++ ToTs s))
-> Instr (ToTs (i ++ s)) (ToTs (o ++ s))
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ forall (a :: [*]) (b :: [*]).
KnownList a =>
Dict (ToTs (a ++ b) ~ (ToTs a ++ ToTs b))
totsAppendLemma @o @s
failingWhenPresent
:: forall c k s v st e.
( MemOpHs c, k ~ MemOpKeyHs c
, NiceConstant e
, Dupable c, Dupable (MemOpKeyHs c)
, st ~ (k : v : c : s)
)
=> (forall s0. k : s0 :-> e : s0)
-> st :-> st
failingWhenPresent :: forall c k (s :: [*]) v (st :: [*]) e.
(MemOpHs c, k ~ MemOpKeyHs c, NiceConstant e, Dupable c,
Dupable (MemOpKeyHs c), st ~ (k : v : c : s)) =>
(forall (s0 :: [*]). (k : s0) :-> (e : s0)) -> st :-> st
failingWhenPresent forall (s0 :: [*]). (k : s0) :-> (e : s0)
mkErr =
forall (n :: Nat) a (inp :: [*]) (out :: [*]).
(ConstraintDUPNLorentz (ToPeano n) inp out a, Dupable a) =>
inp :-> out
dupN @3 (st :-> (c : k : v : c : s))
-> ((c : k : v : c : s) :-> (MemOpKeyHs c : c : k : v : c : s))
-> st :-> (MemOpKeyHs c : c : k : v : c : s)
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
# forall (n :: Nat) a (inp :: [*]) (out :: [*]).
(ConstraintDUPNLorentz (ToPeano n) inp out a, Dupable a) =>
inp :-> out
dupN @2 (st :-> (MemOpKeyHs c : c : k : v : c : s))
-> ((MemOpKeyHs c : c : k : v : c : s) :-> (Bool : k : v : c : s))
-> st :-> (Bool : k : v : c : s)
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
# (MemOpKeyHs c : c : k : v : c : s) :-> (Bool : k : v : c : s)
forall c (s :: [*]).
MemOpHs c =>
(MemOpKeyHs c : c : s) :-> (Bool : s)
mem (st :-> (Bool : k : v : c : s))
-> ((Bool : k : v : c : s) :-> (k : v : c : s))
-> st :-> (k : v : c : s)
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
#
((k : v : c : s) :-> (k : v : c : s))
-> ((k : v : c : s) :-> (k : v : c : s))
-> (Bool : k : v : c : s) :-> (k : v : c : s)
forall (s :: [*]) (s' :: [*]).
(s :-> s') -> (s :-> s') -> (Bool : s) :-> s'
if_ ((k : v : c : s) :-> (e : v : c : s)
forall (s0 :: [*]). (k : s0) :-> (e : s0)
mkErr ((k : v : c : s) :-> (e : v : c : s))
-> ((e : v : c : s) :-> (k : v : c : s))
-> (k : v : c : s) :-> (k : v : c : s)
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
# (e : v : c : s) :-> (k : v : c : s)
forall a (s :: [*]) (t :: [*]). NiceConstant a => (a : s) :-> t
failWith) (k : v : c : s) :-> (k : v : c : s)
forall (s :: [*]). s :-> s
nop
updateNew
:: forall c k s e.
( UpdOpHs c, MemOpHs c, GetOpHs c
, k ~ UpdOpKeyHs c, k ~ MemOpKeyHs c, k ~ GetOpKeyHs c
, KnownValue (GetOpValHs c), NiceConstant e, Dupable k
)
=> (forall s0. k : s0 :-> e : s0)
-> k : UpdOpParamsHs c : c : s :-> c : s
updateNew :: forall c k (s :: [*]) e.
(UpdOpHs c, MemOpHs c, GetOpHs c, k ~ UpdOpKeyHs c,
k ~ MemOpKeyHs c, k ~ GetOpKeyHs c, KnownValue (GetOpValHs c),
NiceConstant e, Dupable k) =>
(forall (s0 :: [*]). (k : s0) :-> (e : s0))
-> (k : UpdOpParamsHs c : c : s) :-> (c : s)
updateNew forall (s0 :: [*]). (k : s0) :-> (e : s0)
mkErr = (k : UpdOpParamsHs c : c : s) :-> (k : k : UpdOpParamsHs c : c : s)
forall a (s :: [*]). Dupable a => (a : s) :-> (a : a : s)
dup ((k : UpdOpParamsHs c : c : s)
:-> (k : k : UpdOpParamsHs c : c : s))
-> ((k : k : UpdOpParamsHs c : c : s)
:-> (k : Maybe (GetOpValHs c) : c : s))
-> (k : UpdOpParamsHs c : c : s)
:-> (k : Maybe (GetOpValHs c) : c : s)
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
# ((k : UpdOpParamsHs c : c : s) :-> (Maybe (GetOpValHs c) : c : s))
-> (k : k : UpdOpParamsHs c : c : s)
:-> (k : Maybe (GetOpValHs c) : c : s)
forall a (s :: [*]) (s' :: [*]).
HasCallStack =>
(s :-> s') -> (a : s) :-> (a : s')
dip (k : UpdOpParamsHs c : c : s) :-> (Maybe (GetOpValHs c) : c : s)
forall c (s :: [*]).
(GetOpHs c, UpdOpHs c, KnownValue (GetOpValHs c),
UpdOpKeyHs c ~ GetOpKeyHs c) =>
(UpdOpKeyHs c : UpdOpParamsHs c : c : s)
:-> (Maybe (GetOpValHs c) : c : s)
getAndUpdate ((k : UpdOpParamsHs c : c : s)
:-> (k : Maybe (GetOpValHs c) : c : s))
-> ((k : Maybe (GetOpValHs c) : c : s)
:-> (Maybe (GetOpValHs c) : k : c : s))
-> (k : UpdOpParamsHs c : c : s)
:-> (Maybe (GetOpValHs c) : k : c : s)
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
# (k : Maybe (GetOpValHs c) : c : s)
:-> (Maybe (GetOpValHs c) : k : c : s)
forall a b (s :: [*]). (a : b : s) :-> (b : a : s)
swap ((k : UpdOpParamsHs c : c : s)
:-> (Maybe (GetOpValHs c) : k : c : s))
-> ((Maybe (GetOpValHs c) : k : c : s) :-> (c : s))
-> (k : UpdOpParamsHs c : c : s) :-> (c : s)
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
# ((k : c : s) :-> (c : s))
-> ((GetOpValHs c : k : c : s) :-> (c : s))
-> (Maybe (GetOpValHs c) : k : c : s) :-> (c : s)
forall (s :: [*]) (s' :: [*]) a.
(s :-> s') -> ((a : s) :-> s') -> (Maybe a : s) :-> s'
ifNone (k : c : s) :-> (c : s)
forall a (s :: [*]). (a : s) :-> s
drop ((GetOpValHs c : k : c : s) :-> (k : c : s)
forall a (s :: [*]). (a : s) :-> s
drop ((GetOpValHs c : k : c : s) :-> (k : c : s))
-> ((k : c : s) :-> (e : c : s))
-> (GetOpValHs c : k : c : s) :-> (e : c : s)
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
# (k : c : s) :-> (e : c : s)
forall (s0 :: [*]). (k : s0) :-> (e : s0)
mkErr ((GetOpValHs c : k : c : s) :-> (e : c : s))
-> ((e : c : s) :-> (c : s))
-> (GetOpValHs c : k : c : s) :-> (c : s)
forall (a :: [*]) (b :: [*]) (c :: [*]).
(a :-> b) -> (b :-> c) -> a :-> c
# (e : c : s) :-> (c : s)
forall a (s :: [*]) (t :: [*]). NiceConstant a => (a : s) :-> t
failWith)
class LorentzFunctor (c :: Type -> Type) where
lmap :: KnownValue b => (a : s :-> b : s) -> (c a : s :-> c b : s)
instance LorentzFunctor Maybe where
lmap :: forall b a (s :: [*]).
KnownValue b =>
((a : s) :-> (b : s)) -> (Maybe a : s) :-> (Maybe b : s)
lmap = ((a : s) :-> (b : s)) -> (Maybe a : s) :-> (Maybe b : s)
forall c b (s :: [*]).
(MapOpHs c, IsoMapOpRes c b, KnownValue b, HasCallStack) =>
((MapOpInpHs c : s) :-> (b : s))
-> (c : s) :-> (MapOpResHs c b : s)
map