massiv-0.1.6.1: Massiv (Массив) is an Array Library.

Copyright(c) Alexey Kuleshevich 2018
LicenseBSD3
MaintainerAlexey Kuleshevich <lehins@yandex.ru>
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Massiv.Core.Index

Description

 

Synopsis

Documentation

type Ix1 = Int Source #

Another type synonym for 1-dimensional index, i.e. Int and Ix1T. Provided here purely for consistency.

pattern Ix1 :: Int -> Ix1 Source #

This is a very handy pattern synonym to indicate that any arbitrary whole number is an Int, i.e. a 1-dimensional index: (Ix1 i) == (i :: Int)

data Ix2 Source #

2-dimensional index. This also a base index for higher dimensions.

Constructors

(:.) !Int !Int infixr 5 

Instances

Bounded Ix2 Source # 

Methods

minBound :: Ix2 #

maxBound :: Ix2 #

Eq Ix2 Source # 

Methods

(==) :: Ix2 -> Ix2 -> Bool #

(/=) :: Ix2 -> Ix2 -> Bool #

Num Ix2 Source # 

Methods

(+) :: Ix2 -> Ix2 -> Ix2 #

(-) :: Ix2 -> Ix2 -> Ix2 #

(*) :: Ix2 -> Ix2 -> Ix2 #

negate :: Ix2 -> Ix2 #

abs :: Ix2 -> Ix2 #

signum :: Ix2 -> Ix2 #

fromInteger :: Integer -> Ix2 #

Ord Ix2 Source # 

Methods

compare :: Ix2 -> Ix2 -> Ordering #

(<) :: Ix2 -> Ix2 -> Bool #

(<=) :: Ix2 -> Ix2 -> Bool #

(>) :: Ix2 -> Ix2 -> Bool #

(>=) :: Ix2 -> Ix2 -> Bool #

max :: Ix2 -> Ix2 -> Ix2 #

min :: Ix2 -> Ix2 -> Ix2 #

Show Ix2 Source # 

Methods

showsPrec :: Int -> Ix2 -> ShowS #

show :: Ix2 -> String #

showList :: [Ix2] -> ShowS #

NFData Ix2 Source # 

Methods

rnf :: Ix2 -> () #

Unbox Ix2 Source #

Unboxing of a Ix2.

Index Ix2 Source # 

Associated Types

type Rank Ix2 :: Nat Source #

Methods

rank :: Ix2 -> Dim Source #

totalElem :: Ix2 -> Int Source #

consDim :: Int -> Lower Ix2 -> Ix2 Source #

unconsDim :: Ix2 -> (Int, Lower Ix2) Source #

snocDim :: Lower Ix2 -> Int -> Ix2 Source #

unsnocDim :: Ix2 -> (Lower Ix2, Int) Source #

dropDim :: Ix2 -> Dim -> Maybe (Lower Ix2) Source #

getIndex :: Ix2 -> Dim -> Maybe Int Source #

setIndex :: Ix2 -> Dim -> Int -> Maybe Ix2 Source #

pureIndex :: Int -> Ix2 Source #

liftIndex2 :: (Int -> Int -> Int) -> Ix2 -> Ix2 -> Ix2 Source #

zeroIndex :: Ix2 Source #

liftIndex :: (Int -> Int) -> Ix2 -> Ix2 Source #

isSafeIndex :: Ix2 -> Ix2 -> Bool Source #

toLinearIndex :: Ix2 -> Ix2 -> Int Source #

toLinearIndexAcc :: Int -> Ix2 -> Ix2 -> Int Source #

fromLinearIndex :: Ix2 -> Int -> Ix2 Source #

fromLinearIndexAcc :: Ix2 -> Int -> (Int, Ix2) Source #

repairIndex :: Ix2 -> Ix2 -> (Int -> Int -> Int) -> (Int -> Int -> Int) -> Ix2 Source #

iter :: Ix2 -> Ix2 -> Int -> (Int -> Int -> Bool) -> a -> (Ix2 -> a -> a) -> a Source #

iterM :: Monad m => Ix2 -> Ix2 -> Int -> (Int -> Int -> Bool) -> a -> (Ix2 -> a -> m a) -> m a Source #

iterM_ :: Monad m => Ix2 -> Ix2 -> Int -> (Int -> Int -> Bool) -> (Ix2 -> m a) -> m () Source #

Vector Vector Ix2 Source # 
MVector MVector Ix2 Source # 
Load DW Ix2 e Source # 

Methods

loadS :: Monad m => Array DW Ix2 e -> (Int -> m e) -> (Int -> e -> m ()) -> m () Source #

loadP :: [Int] -> Array DW Ix2 e -> (Int -> IO e) -> (Int -> e -> IO ()) -> IO () Source #

data Vector Ix2 Source # 
type Rank Ix2 Source # 
type Rank Ix2 = 2
type Lower Ix2 Source # 
type Lower Ix2 = Ix1
data MVector s Ix2 Source # 

pattern Ix2 :: Int -> Int -> Ix2 Source #

2-dimensional index constructor. Useful when TypeOperators extension isn't enabled, or simply infix notation is inconvenient. (Ix2 i j) == (i :. j).

type Ix3 = IxN 3 Source #

3-dimensional type synonym. Useful as a alternative to enabling DataKinds and using type level Nats.

pattern Ix3 :: Int -> Int -> Int -> Ix3 Source #

3-dimensional index constructor. (Ix3 i j k) == (i :> j :. k).

type Ix4 = IxN 4 Source #

4-dimensional type synonym.

pattern Ix4 :: Int -> Int -> Int -> Int -> Ix4 Source #

4-dimensional index constructor. (Ix4 i j k l) == (i :> j :> k :. l).

type Ix5 = IxN 5 Source #

5-dimensional type synonym.

pattern Ix5 :: Int -> Int -> Int -> Int -> Int -> Ix5 Source #

5-dimensional index constructor. (Ix5 i j k l m) = (i :> j :> k :> l :. m).

data IxN (n :: Nat) where Source #

n-dimensional index. Needs a base case, which is the Ix2.

Constructors

(:>) :: !Int -> !(Ix (n - 1)) -> IxN n infixr 5 

Instances

Bounded Ix3 Source # 

Methods

minBound :: Ix3 #

maxBound :: Ix3 #

Num Ix3 Source # 

Methods

(+) :: Ix3 -> Ix3 -> Ix3 #

(-) :: Ix3 -> Ix3 -> Ix3 #

(*) :: Ix3 -> Ix3 -> Ix3 #

negate :: Ix3 -> Ix3 #

abs :: Ix3 -> Ix3 #

signum :: Ix3 -> Ix3 #

fromInteger :: Integer -> Ix3 #

((<=) 3 n, Unbox (Ix ((-) n 1))) => Vector Vector (IxN n) Source # 

Methods

basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) (IxN n) -> m (Vector (IxN n)) #

basicUnsafeThaw :: PrimMonad m => Vector (IxN n) -> m (Mutable Vector (PrimState m) (IxN n)) #

basicLength :: Vector (IxN n) -> Int #

basicUnsafeSlice :: Int -> Int -> Vector (IxN n) -> Vector (IxN n) #

basicUnsafeIndexM :: Monad m => Vector (IxN n) -> Int -> m (IxN n) #

basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) (IxN n) -> Vector (IxN n) -> m () #

elemseq :: Vector (IxN n) -> IxN n -> b -> b #

((<=) 3 n, Unbox (Ix ((-) n 1))) => MVector MVector (IxN n) Source # 

Methods

basicLength :: MVector s (IxN n) -> Int #

basicUnsafeSlice :: Int -> Int -> MVector s (IxN n) -> MVector s (IxN n) #

basicOverlaps :: MVector s (IxN n) -> MVector s (IxN n) -> Bool #

basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) (IxN n)) #

basicInitialize :: PrimMonad m => MVector (PrimState m) (IxN n) -> m () #

basicUnsafeReplicate :: PrimMonad m => Int -> IxN n -> m (MVector (PrimState m) (IxN n)) #

basicUnsafeRead :: PrimMonad m => MVector (PrimState m) (IxN n) -> Int -> m (IxN n) #

basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) (IxN n) -> Int -> IxN n -> m () #

basicClear :: PrimMonad m => MVector (PrimState m) (IxN n) -> m () #

basicSet :: PrimMonad m => MVector (PrimState m) (IxN n) -> IxN n -> m () #

basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) (IxN n) -> MVector (PrimState m) (IxN n) -> m () #

basicUnsafeMove :: PrimMonad m => MVector (PrimState m) (IxN n) -> MVector (PrimState m) (IxN n) -> m () #

basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) (IxN n) -> Int -> m (MVector (PrimState m) (IxN n)) #

((<=) 4 n, KnownNat n, Index (Ix ((-) n 1)), (~) * (IxN ((-) n 1)) (Ix ((-) n 1))) => Bounded (IxN n) Source # 

Methods

minBound :: IxN n #

maxBound :: IxN n #

Eq (Ix ((-) n 1)) => Eq (IxN n) Source # 

Methods

(==) :: IxN n -> IxN n -> Bool #

(/=) :: IxN n -> IxN n -> Bool #

((<=) 4 n, KnownNat n, Index (Ix ((-) n 1)), (~) * (IxN ((-) n 1)) (Ix ((-) n 1))) => Num (IxN n) Source # 

Methods

(+) :: IxN n -> IxN n -> IxN n #

(-) :: IxN n -> IxN n -> IxN n #

(*) :: IxN n -> IxN n -> IxN n #

negate :: IxN n -> IxN n #

abs :: IxN n -> IxN n #

signum :: IxN n -> IxN n #

fromInteger :: Integer -> IxN n #

Ord (Ix ((-) n 1)) => Ord (IxN n) Source # 

Methods

compare :: IxN n -> IxN n -> Ordering #

(<) :: IxN n -> IxN n -> Bool #

(<=) :: IxN n -> IxN n -> Bool #

(>) :: IxN n -> IxN n -> Bool #

(>=) :: IxN n -> IxN n -> Bool #

max :: IxN n -> IxN n -> IxN n #

min :: IxN n -> IxN n -> IxN n #

Show (Ix ((-) n 1)) => Show (IxN n) Source # 

Methods

showsPrec :: Int -> IxN n -> ShowS #

show :: IxN n -> String #

showList :: [IxN n] -> ShowS #

NFData (IxN n) Source # 

Methods

rnf :: IxN n -> () #

((<=) 3 n, Unbox (Ix ((-) n 1))) => Unbox (IxN n) Source #

Unboxing of a IxN.

((<=) 4 n, KnownNat n, Index (Ix ((-) n 1)), (~) * (IxN ((-) n 1)) (Ix ((-) n 1))) => Index (IxN n) Source # 

Associated Types

type Rank (IxN n) :: Nat Source #

Methods

rank :: IxN n -> Dim Source #

totalElem :: IxN n -> Int Source #

consDim :: Int -> Lower (IxN n) -> IxN n Source #

unconsDim :: IxN n -> (Int, Lower (IxN n)) Source #

snocDim :: Lower (IxN n) -> Int -> IxN n Source #

unsnocDim :: IxN n -> (Lower (IxN n), Int) Source #

dropDim :: IxN n -> Dim -> Maybe (Lower (IxN n)) Source #

getIndex :: IxN n -> Dim -> Maybe Int Source #

setIndex :: IxN n -> Dim -> Int -> Maybe (IxN n) Source #

pureIndex :: Int -> IxN n Source #

liftIndex2 :: (Int -> Int -> Int) -> IxN n -> IxN n -> IxN n Source #

zeroIndex :: IxN n Source #

liftIndex :: (Int -> Int) -> IxN n -> IxN n Source #

isSafeIndex :: IxN n -> IxN n -> Bool Source #

toLinearIndex :: IxN n -> IxN n -> Int Source #

toLinearIndexAcc :: Int -> IxN n -> IxN n -> Int Source #

fromLinearIndex :: IxN n -> Int -> IxN n Source #

fromLinearIndexAcc :: IxN n -> Int -> (Int, IxN n) Source #

repairIndex :: IxN n -> IxN n -> (Int -> Int -> Int) -> (Int -> Int -> Int) -> IxN n Source #

iter :: IxN n -> IxN n -> Int -> (Int -> Int -> Bool) -> a -> (IxN n -> a -> a) -> a Source #

iterM :: Monad m => IxN n -> IxN n -> Int -> (Int -> Int -> Bool) -> a -> (IxN n -> a -> m a) -> m a Source #

iterM_ :: Monad m => IxN n -> IxN n -> Int -> (Int -> Int -> Bool) -> (IxN n -> m a) -> m () Source #

Index (IxN 3) Source # 

Associated Types

type Rank (IxN 3) :: Nat Source #

Methods

rank :: IxN 3 -> Dim Source #

totalElem :: IxN 3 -> Int Source #

consDim :: Int -> Lower (IxN 3) -> IxN 3 Source #

unconsDim :: IxN 3 -> (Int, Lower (IxN 3)) Source #

snocDim :: Lower (IxN 3) -> Int -> IxN 3 Source #

unsnocDim :: IxN 3 -> (Lower (IxN 3), Int) Source #

dropDim :: IxN 3 -> Dim -> Maybe (Lower (IxN 3)) Source #

getIndex :: IxN 3 -> Dim -> Maybe Int Source #

setIndex :: IxN 3 -> Dim -> Int -> Maybe (IxN 3) Source #

pureIndex :: Int -> IxN 3 Source #

liftIndex2 :: (Int -> Int -> Int) -> IxN 3 -> IxN 3 -> IxN 3 Source #

zeroIndex :: IxN 3 Source #

liftIndex :: (Int -> Int) -> IxN 3 -> IxN 3 Source #

isSafeIndex :: IxN 3 -> IxN 3 -> Bool Source #

toLinearIndex :: IxN 3 -> IxN 3 -> Int Source #

toLinearIndexAcc :: Int -> IxN 3 -> IxN 3 -> Int Source #

fromLinearIndex :: IxN 3 -> Int -> IxN 3 Source #

fromLinearIndexAcc :: IxN 3 -> Int -> (Int, IxN 3) Source #

repairIndex :: IxN 3 -> IxN 3 -> (Int -> Int -> Int) -> (Int -> Int -> Int) -> IxN 3 Source #

iter :: IxN 3 -> IxN 3 -> Int -> (Int -> Int -> Bool) -> a -> (IxN 3 -> a -> a) -> a Source #

iterM :: Monad m => IxN 3 -> IxN 3 -> Int -> (Int -> Int -> Bool) -> a -> (IxN 3 -> a -> m a) -> m a Source #

iterM_ :: Monad m => IxN 3 -> IxN 3 -> Int -> (Int -> Int -> Bool) -> (IxN 3 -> m a) -> m () Source #

type Rank Ix3 Source # 
type Rank Ix3 = 3
data MVector s (IxN n) Source # 
data MVector s (IxN n) = MV_IxN (MVector s Int, MVector s (Ix ((-) n 1)))
data Vector (IxN n) Source # 
data Vector (IxN n) = V_IxN (Vector Int, Vector (Ix ((-) n 1)))
type Rank (IxN n) Source # 
type Rank (IxN n) = n
type Lower (IxN n) Source # 
type Lower (IxN n) = Ix ((-) n 1)

type family Ix (n :: Nat) = r | r -> n where ... Source #

Defines n-dimensional index by relating a general IxN with few base cases.

Equations

Ix 0 = Ix0 
Ix 1 = Ix1 
Ix 2 = Ix2 
Ix n = IxN n 

toIx2 :: Ix2T -> Ix2 Source #

Convert a Int tuple to Ix2

fromIx2 :: Ix2 -> Ix2T Source #

Convert an Ix2 to Int tuple

toIx3 :: Ix3T -> Ix3 Source #

Convert a Int 3-tuple to Ix3

fromIx3 :: Ix3 -> Ix3T Source #

Convert an Ix3 to Int 3-tuple

toIx4 :: Ix4T -> Ix4 Source #

Convert a Int 4-tuple to Ix4

fromIx4 :: Ix4 -> Ix4T Source #

Convert an Ix4 to Int 4-tuple

toIx5 :: Ix5T -> Ix5 Source #

Convert a Int 5-tuple to Ix5

fromIx5 :: Ix5 -> Ix5T Source #

Convert an Ix5 to Int 5-tuple

data Border e Source #

Approach to be used near the borders during various transformations. Whenever a function needs information not only about an element of interest, but also about it's neighbors, it will go out of bounds near the array edges, hence is this set of approaches that specify how to handle such situation.

Constructors

Fill e

Fill in a constant element.

           outside |  Array  | outside
(Fill 0) : 0 0 0 0 | 1 2 3 4 | 0 0 0 0
Wrap

Wrap around from the opposite border of the array.

           outside |  Array  | outside
Wrap :     1 2 3 4 | 1 2 3 4 | 1 2 3 4
Edge

Replicate the element at the edge.

           outside |  Array  | outside
Edge :     1 1 1 1 | 1 2 3 4 | 4 4 4 4
Reflect

Mirror like reflection.

           outside |  Array  | outside
Reflect :  4 3 2 1 | 1 2 3 4 | 4 3 2 1
Continue

Also mirror like reflection, but without repeating the edge element.

           outside |  Array  | outside
Continue : 1 4 3 2 | 1 2 3 4 | 3 2 1 4

Instances

Eq e => Eq (Border e) Source # 

Methods

(==) :: Border e -> Border e -> Bool #

(/=) :: Border e -> Border e -> Bool #

Show e => Show (Border e) Source # 

Methods

showsPrec :: Int -> Border e -> ShowS #

show :: Border e -> String #

showList :: [Border e] -> ShowS #

NFData e => NFData (Border e) Source # 

Methods

rnf :: Border e -> () #

handleBorderIndex Source #

Arguments

:: Index ix 
=> Border e

Broder resolution technique

-> ix

Size

-> (ix -> e)

Index function that produces an element

-> ix

Index

-> e 

Apply a border resolution technique to an index

newtype Dim Source #

A way to select Array dimension.

Constructors

Dim Int 

Instances

Enum Dim Source # 

Methods

succ :: Dim -> Dim #

pred :: Dim -> Dim #

toEnum :: Int -> Dim #

fromEnum :: Dim -> Int #

enumFrom :: Dim -> [Dim] #

enumFromThen :: Dim -> Dim -> [Dim] #

enumFromTo :: Dim -> Dim -> [Dim] #

enumFromThenTo :: Dim -> Dim -> Dim -> [Dim] #

Eq Dim Source # 

Methods

(==) :: Dim -> Dim -> Bool #

(/=) :: Dim -> Dim -> Bool #

Integral Dim Source # 

Methods

quot :: Dim -> Dim -> Dim #

rem :: Dim -> Dim -> Dim #

div :: Dim -> Dim -> Dim #

mod :: Dim -> Dim -> Dim #

quotRem :: Dim -> Dim -> (Dim, Dim) #

divMod :: Dim -> Dim -> (Dim, Dim) #

toInteger :: Dim -> Integer #

Num Dim Source # 

Methods

(+) :: Dim -> Dim -> Dim #

(-) :: Dim -> Dim -> Dim #

(*) :: Dim -> Dim -> Dim #

negate :: Dim -> Dim #

abs :: Dim -> Dim #

signum :: Dim -> Dim #

fromInteger :: Integer -> Dim #

Ord Dim Source # 

Methods

compare :: Dim -> Dim -> Ordering #

(<) :: Dim -> Dim -> Bool #

(<=) :: Dim -> Dim -> Bool #

(>) :: Dim -> Dim -> Bool #

(>=) :: Dim -> Dim -> Bool #

max :: Dim -> Dim -> Dim #

min :: Dim -> Dim -> Dim #

Real Dim Source # 

Methods

toRational :: Dim -> Rational #

Show Dim Source # 

Methods

showsPrec :: Int -> Dim -> ShowS #

show :: Dim -> String #

showList :: [Dim] -> ShowS #

data Ix0 Source #

Zero-dimension, i.e. a scalar. Can't really be used directly as there are no instances of Index for it, and is included for completeness.

Constructors

Ix0 

Instances

Eq Ix0 Source # 

Methods

(==) :: Ix0 -> Ix0 -> Bool #

(/=) :: Ix0 -> Ix0 -> Bool #

Ord Ix0 Source # 

Methods

compare :: Ix0 -> Ix0 -> Ordering #

(<) :: Ix0 -> Ix0 -> Bool #

(<=) :: Ix0 -> Ix0 -> Bool #

(>) :: Ix0 -> Ix0 -> Bool #

(>=) :: Ix0 -> Ix0 -> Bool #

max :: Ix0 -> Ix0 -> Ix0 #

min :: Ix0 -> Ix0 -> Ix0 #

Show Ix0 Source # 

Methods

showsPrec :: Int -> Ix0 -> ShowS #

show :: Ix0 -> String #

showList :: [Ix0] -> ShowS #

type Ix1T = Int Source #

1-dimensional index. Synonym for Int and Ix1.

type Ix2T = (Int, Int) Source #

2-dimensional index as tuple of Ints.

type Ix3T = (Int, Int, Int) Source #

3-dimensional index as 3-tuple of Ints.

type Ix4T = (Int, Int, Int, Int) Source #

4-dimensional index as 4-tuple of Ints.

type Ix5T = (Int, Int, Int, Int, Int) Source #

5-dimensional index as 5-tuple of Ints.

type family Lower ix :: * Source #

This type family will always point to a type for a dimension that is one lower than the type argument.

Instances

type Lower Ix5T Source # 
type Lower Ix5T = Ix4T
type Lower Ix4T Source # 
type Lower Ix4T = Ix3T
type Lower Ix3T Source # 
type Lower Ix3T = Ix2T
type Lower Ix2T Source # 
type Lower Ix2T = Ix1T
type Lower Ix1T Source # 
type Lower Ix1T = Ix0
type Lower Ix2 Source # 
type Lower Ix2 = Ix1
type Lower (IxN n) Source # 
type Lower (IxN n) = Ix ((-) n 1)

class (Eq ix, Ord ix, Show ix, NFData ix) => Index ix where Source #

This is bread and butter of multi-dimensional array indexing. It is unlikely that any of the functions in this class will be useful to a regular user, unless general algorithms are being implemented that do span multiple dimensions.

Associated Types

type Rank ix :: Nat Source #

Methods

rank :: ix -> Dim Source #

Rank of an array that has this index type, i.e. what is the dimensionality.

totalElem :: ix -> Int Source #

Total number of elements in an array of this size.

consDim :: Int -> Lower ix -> ix Source #

Prepend a dimension to the index

unconsDim :: ix -> (Int, Lower ix) Source #

Take a dimension from the index from the outside

snocDim :: Lower ix -> Int -> ix Source #

Apppend a dimension to the index

unsnocDim :: ix -> (Lower ix, Int) Source #

Take a dimension from the index from the inside

dropDim :: ix -> Dim -> Maybe (Lower ix) Source #

Remove a dimension from the index

getIndex :: ix -> Dim -> Maybe Int Source #

Extract the value index has at specified dimension.

setIndex :: ix -> Dim -> Int -> Maybe ix Source #

Set the value for an index at specified dimension.

pureIndex :: Int -> ix Source #

Lift an Int to any index by replicating the value as many times as there are dimensions.

liftIndex2 :: (Int -> Int -> Int) -> ix -> ix -> ix Source #

Zip together two indices with a function

zeroIndex :: ix Source #

Index with all zeros

liftIndex :: (Int -> Int) -> ix -> ix Source #

Map a function over an index

isSafeIndex Source #

Arguments

:: ix

Size

-> ix

Index

-> Bool 

Check whether index is within the size.

isSafeIndex Source #

Arguments

:: Index (Lower ix) 
=> ix

Size

-> ix

Index

-> Bool 

Check whether index is within the size.

toLinearIndex Source #

Arguments

:: ix

Size

-> ix

Index

-> Int 

Convert linear index from size and index

toLinearIndex Source #

Arguments

:: Index (Lower ix) 
=> ix

Size

-> ix

Index

-> Int 

Convert linear index from size and index

toLinearIndexAcc :: Int -> ix -> ix -> Int Source #

Convert linear index from size and index with an accumulator. Currently is useless and will likley be removed in future versions.

toLinearIndexAcc :: Index (Lower ix) => Int -> ix -> ix -> Int Source #

Convert linear index from size and index with an accumulator. Currently is useless and will likley be removed in future versions.

fromLinearIndex :: ix -> Int -> ix Source #

Compute an index from size and linear index

fromLinearIndex :: Index (Lower ix) => ix -> Int -> ix Source #

Compute an index from size and linear index

fromLinearIndexAcc :: ix -> Int -> (Int, ix) Source #

Compute an index from size and linear index using an accumulator, thus trying to optimize for tail recursion while getting the index computed.

fromLinearIndexAcc :: Index (Lower ix) => ix -> Int -> (Int, ix) Source #

Compute an index from size and linear index using an accumulator, thus trying to optimize for tail recursion while getting the index computed.

repairIndex Source #

Arguments

:: ix

Size

-> ix

Index

-> (Int -> Int -> Int)

Repair when below zero

-> (Int -> Int -> Int)

Repair when higher than size

-> ix 

A way to make sure index is withing the bounds for the supplied size. Takes two functions that will be invoked whenever index (2nd arg) is outsize the supplied size (1st arg)

repairIndex Source #

Arguments

:: Index (Lower ix) 
=> ix

Size

-> ix

Index

-> (Int -> Int -> Int)

Repair when below zero

-> (Int -> Int -> Int)

Repair when higher than size

-> ix 

A way to make sure index is withing the bounds for the supplied size. Takes two functions that will be invoked whenever index (2nd arg) is outsize the supplied size (1st arg)

iter :: ix -> ix -> Int -> (Int -> Int -> Bool) -> a -> (ix -> a -> a) -> a Source #

Iterator for the index. Same as iterM, but pure.

iterM Source #

Arguments

:: Monad m 
=> ix

Start index

-> ix

End index

-> Int

Increment

-> (Int -> Int -> Bool)

Continue iterating while predicate is True (eg. until end of row)

-> a

Initial value for an accumulator

-> (ix -> a -> m a)

Accumulator function

-> m a 

This function is what makes it possible to iterate over an array of any dimension.

iterM Source #

Arguments

:: (Index (Lower ix), Monad m) 
=> ix

Start index

-> ix

End index

-> Int

Increment

-> (Int -> Int -> Bool)

Continue iterating while predicate is True (eg. until end of row)

-> a

Initial value for an accumulator

-> (ix -> a -> m a)

Accumulator function

-> m a 

This function is what makes it possible to iterate over an array of any dimension.

iterM_ :: Monad m => ix -> ix -> Int -> (Int -> Int -> Bool) -> (ix -> m a) -> m () Source #

Same as iterM, but don't bother with accumulator and return value.

iterM_ :: (Index (Lower ix), Monad m) => ix -> ix -> Int -> (Int -> Int -> Bool) -> (ix -> m a) -> m () Source #

Same as iterM, but don't bother with accumulator and return value.

Instances

Index Ix5T Source # 

Associated Types

type Rank Ix5T :: Nat Source #

Methods

rank :: Ix5T -> Dim Source #

totalElem :: Ix5T -> Int Source #

consDim :: Int -> Lower Ix5T -> Ix5T Source #

unconsDim :: Ix5T -> (Int, Lower Ix5T) Source #

snocDim :: Lower Ix5T -> Int -> Ix5T Source #

unsnocDim :: Ix5T -> (Lower Ix5T, Int) Source #

dropDim :: Ix5T -> Dim -> Maybe (Lower Ix5T) Source #

getIndex :: Ix5T -> Dim -> Maybe Int Source #

setIndex :: Ix5T -> Dim -> Int -> Maybe Ix5T Source #

pureIndex :: Int -> Ix5T Source #

liftIndex2 :: (Int -> Int -> Int) -> Ix5T -> Ix5T -> Ix5T Source #

zeroIndex :: Ix5T Source #

liftIndex :: (Int -> Int) -> Ix5T -> Ix5T Source #

isSafeIndex :: Ix5T -> Ix5T -> Bool Source #

toLinearIndex :: Ix5T -> Ix5T -> Int Source #

toLinearIndexAcc :: Int -> Ix5T -> Ix5T -> Int Source #

fromLinearIndex :: Ix5T -> Int -> Ix5T Source #

fromLinearIndexAcc :: Ix5T -> Int -> (Int, Ix5T) Source #

repairIndex :: Ix5T -> Ix5T -> (Int -> Int -> Int) -> (Int -> Int -> Int) -> Ix5T Source #

iter :: Ix5T -> Ix5T -> Int -> (Int -> Int -> Bool) -> a -> (Ix5T -> a -> a) -> a Source #

iterM :: Monad m => Ix5T -> Ix5T -> Int -> (Int -> Int -> Bool) -> a -> (Ix5T -> a -> m a) -> m a Source #

iterM_ :: Monad m => Ix5T -> Ix5T -> Int -> (Int -> Int -> Bool) -> (Ix5T -> m a) -> m () Source #

Index Ix4T Source # 

Associated Types

type Rank Ix4T :: Nat Source #

Methods

rank :: Ix4T -> Dim Source #

totalElem :: Ix4T -> Int Source #

consDim :: Int -> Lower Ix4T -> Ix4T Source #

unconsDim :: Ix4T -> (Int, Lower Ix4T) Source #

snocDim :: Lower Ix4T -> Int -> Ix4T Source #

unsnocDim :: Ix4T -> (Lower Ix4T, Int) Source #

dropDim :: Ix4T -> Dim -> Maybe (Lower Ix4T) Source #

getIndex :: Ix4T -> Dim -> Maybe Int Source #

setIndex :: Ix4T -> Dim -> Int -> Maybe Ix4T Source #

pureIndex :: Int -> Ix4T Source #

liftIndex2 :: (Int -> Int -> Int) -> Ix4T -> Ix4T -> Ix4T Source #

zeroIndex :: Ix4T Source #

liftIndex :: (Int -> Int) -> Ix4T -> Ix4T Source #

isSafeIndex :: Ix4T -> Ix4T -> Bool Source #

toLinearIndex :: Ix4T -> Ix4T -> Int Source #

toLinearIndexAcc :: Int -> Ix4T -> Ix4T -> Int Source #

fromLinearIndex :: Ix4T -> Int -> Ix4T Source #

fromLinearIndexAcc :: Ix4T -> Int -> (Int, Ix4T) Source #

repairIndex :: Ix4T -> Ix4T -> (Int -> Int -> Int) -> (Int -> Int -> Int) -> Ix4T Source #

iter :: Ix4T -> Ix4T -> Int -> (Int -> Int -> Bool) -> a -> (Ix4T -> a -> a) -> a Source #

iterM :: Monad m => Ix4T -> Ix4T -> Int -> (Int -> Int -> Bool) -> a -> (Ix4T -> a -> m a) -> m a Source #

iterM_ :: Monad m => Ix4T -> Ix4T -> Int -> (Int -> Int -> Bool) -> (Ix4T -> m a) -> m () Source #

Index Ix3T Source # 

Associated Types

type Rank Ix3T :: Nat Source #

Methods

rank :: Ix3T -> Dim Source #

totalElem :: Ix3T -> Int Source #

consDim :: Int -> Lower Ix3T -> Ix3T Source #

unconsDim :: Ix3T -> (Int, Lower Ix3T) Source #

snocDim :: Lower Ix3T -> Int -> Ix3T Source #

unsnocDim :: Ix3T -> (Lower Ix3T, Int) Source #

dropDim :: Ix3T -> Dim -> Maybe (Lower Ix3T) Source #

getIndex :: Ix3T -> Dim -> Maybe Int Source #

setIndex :: Ix3T -> Dim -> Int -> Maybe Ix3T Source #

pureIndex :: Int -> Ix3T Source #

liftIndex2 :: (Int -> Int -> Int) -> Ix3T -> Ix3T -> Ix3T Source #

zeroIndex :: Ix3T Source #

liftIndex :: (Int -> Int) -> Ix3T -> Ix3T Source #

isSafeIndex :: Ix3T -> Ix3T -> Bool Source #

toLinearIndex :: Ix3T -> Ix3T -> Int Source #

toLinearIndexAcc :: Int -> Ix3T -> Ix3T -> Int Source #

fromLinearIndex :: Ix3T -> Int -> Ix3T Source #

fromLinearIndexAcc :: Ix3T -> Int -> (Int, Ix3T) Source #

repairIndex :: Ix3T -> Ix3T -> (Int -> Int -> Int) -> (Int -> Int -> Int) -> Ix3T Source #

iter :: Ix3T -> Ix3T -> Int -> (Int -> Int -> Bool) -> a -> (Ix3T -> a -> a) -> a Source #

iterM :: Monad m => Ix3T -> Ix3T -> Int -> (Int -> Int -> Bool) -> a -> (Ix3T -> a -> m a) -> m a Source #

iterM_ :: Monad m => Ix3T -> Ix3T -> Int -> (Int -> Int -> Bool) -> (Ix3T -> m a) -> m () Source #

Index Ix2T Source # 

Associated Types

type Rank Ix2T :: Nat Source #

Methods

rank :: Ix2T -> Dim Source #

totalElem :: Ix2T -> Int Source #

consDim :: Int -> Lower Ix2T -> Ix2T Source #

unconsDim :: Ix2T -> (Int, Lower Ix2T) Source #

snocDim :: Lower Ix2T -> Int -> Ix2T Source #

unsnocDim :: Ix2T -> (Lower Ix2T, Int) Source #

dropDim :: Ix2T -> Dim -> Maybe (Lower Ix2T) Source #

getIndex :: Ix2T -> Dim -> Maybe Int Source #

setIndex :: Ix2T -> Dim -> Int -> Maybe Ix2T Source #

pureIndex :: Int -> Ix2T Source #

liftIndex2 :: (Int -> Int -> Int) -> Ix2T -> Ix2T -> Ix2T Source #

zeroIndex :: Ix2T Source #

liftIndex :: (Int -> Int) -> Ix2T -> Ix2T Source #

isSafeIndex :: Ix2T -> Ix2T -> Bool Source #

toLinearIndex :: Ix2T -> Ix2T -> Int Source #

toLinearIndexAcc :: Int -> Ix2T -> Ix2T -> Int Source #

fromLinearIndex :: Ix2T -> Int -> Ix2T Source #

fromLinearIndexAcc :: Ix2T -> Int -> (Int, Ix2T) Source #

repairIndex :: Ix2T -> Ix2T -> (Int -> Int -> Int) -> (Int -> Int -> Int) -> Ix2T Source #

iter :: Ix2T -> Ix2T -> Int -> (Int -> Int -> Bool) -> a -> (Ix2T -> a -> a) -> a Source #

iterM :: Monad m => Ix2T -> Ix2T -> Int -> (Int -> Int -> Bool) -> a -> (Ix2T -> a -> m a) -> m a Source #

iterM_ :: Monad m => Ix2T -> Ix2T -> Int -> (Int -> Int -> Bool) -> (Ix2T -> m a) -> m () Source #

Index Ix1T Source # 

Associated Types

type Rank Ix1T :: Nat Source #

Methods

rank :: Ix1T -> Dim Source #

totalElem :: Ix1T -> Int Source #

consDim :: Int -> Lower Ix1T -> Ix1T Source #

unconsDim :: Ix1T -> (Int, Lower Ix1T) Source #

snocDim :: Lower Ix1T -> Int -> Ix1T Source #

unsnocDim :: Ix1T -> (Lower Ix1T, Int) Source #

dropDim :: Ix1T -> Dim -> Maybe (Lower Ix1T) Source #

getIndex :: Ix1T -> Dim -> Maybe Int Source #

setIndex :: Ix1T -> Dim -> Int -> Maybe Ix1T Source #

pureIndex :: Int -> Ix1T Source #

liftIndex2 :: (Int -> Int -> Int) -> Ix1T -> Ix1T -> Ix1T Source #

zeroIndex :: Ix1T Source #

liftIndex :: (Int -> Int) -> Ix1T -> Ix1T Source #

isSafeIndex :: Ix1T -> Ix1T -> Bool Source #

toLinearIndex :: Ix1T -> Ix1T -> Int Source #

toLinearIndexAcc :: Int -> Ix1T -> Ix1T -> Int Source #

fromLinearIndex :: Ix1T -> Int -> Ix1T Source #

fromLinearIndexAcc :: Ix1T -> Int -> (Int, Ix1T) Source #

repairIndex :: Ix1T -> Ix1T -> (Int -> Int -> Int) -> (Int -> Int -> Int) -> Ix1T Source #

iter :: Ix1T -> Ix1T -> Int -> (Int -> Int -> Bool) -> a -> (Ix1T -> a -> a) -> a Source #

iterM :: Monad m => Ix1T -> Ix1T -> Int -> (Int -> Int -> Bool) -> a -> (Ix1T -> a -> m a) -> m a Source #

iterM_ :: Monad m => Ix1T -> Ix1T -> Int -> (Int -> Int -> Bool) -> (Ix1T -> m a) -> m () Source #

Index Ix2 Source # 

Associated Types

type Rank Ix2 :: Nat Source #

Methods

rank :: Ix2 -> Dim Source #

totalElem :: Ix2 -> Int Source #

consDim :: Int -> Lower Ix2 -> Ix2 Source #

unconsDim :: Ix2 -> (Int, Lower Ix2) Source #

snocDim :: Lower Ix2 -> Int -> Ix2 Source #

unsnocDim :: Ix2 -> (Lower Ix2, Int) Source #

dropDim :: Ix2 -> Dim -> Maybe (Lower Ix2) Source #

getIndex :: Ix2 -> Dim -> Maybe Int Source #

setIndex :: Ix2 -> Dim -> Int -> Maybe Ix2 Source #

pureIndex :: Int -> Ix2 Source #

liftIndex2 :: (Int -> Int -> Int) -> Ix2 -> Ix2 -> Ix2 Source #

zeroIndex :: Ix2 Source #

liftIndex :: (Int -> Int) -> Ix2 -> Ix2 Source #

isSafeIndex :: Ix2 -> Ix2 -> Bool Source #

toLinearIndex :: Ix2 -> Ix2 -> Int Source #

toLinearIndexAcc :: Int -> Ix2 -> Ix2 -> Int Source #

fromLinearIndex :: Ix2 -> Int -> Ix2 Source #

fromLinearIndexAcc :: Ix2 -> Int -> (Int, Ix2) Source #

repairIndex :: Ix2 -> Ix2 -> (Int -> Int -> Int) -> (Int -> Int -> Int) -> Ix2 Source #

iter :: Ix2 -> Ix2 -> Int -> (Int -> Int -> Bool) -> a -> (Ix2 -> a -> a) -> a Source #

iterM :: Monad m => Ix2 -> Ix2 -> Int -> (Int -> Int -> Bool) -> a -> (Ix2 -> a -> m a) -> m a Source #

iterM_ :: Monad m => Ix2 -> Ix2 -> Int -> (Int -> Int -> Bool) -> (Ix2 -> m a) -> m () Source #

((<=) 4 n, KnownNat n, Index (Ix ((-) n 1)), (~) * (IxN ((-) n 1)) (Ix ((-) n 1))) => Index (IxN n) Source # 

Associated Types

type Rank (IxN n) :: Nat Source #

Methods

rank :: IxN n -> Dim Source #

totalElem :: IxN n -> Int Source #

consDim :: Int -> Lower (IxN n) -> IxN n Source #

unconsDim :: IxN n -> (Int, Lower (IxN n)) Source #

snocDim :: Lower (IxN n) -> Int -> IxN n Source #

unsnocDim :: IxN n -> (Lower (IxN n), Int) Source #

dropDim :: IxN n -> Dim -> Maybe (Lower (IxN n)) Source #

getIndex :: IxN n -> Dim -> Maybe Int Source #

setIndex :: IxN n -> Dim -> Int -> Maybe (IxN n) Source #

pureIndex :: Int -> IxN n Source #

liftIndex2 :: (Int -> Int -> Int) -> IxN n -> IxN n -> IxN n Source #

zeroIndex :: IxN n Source #

liftIndex :: (Int -> Int) -> IxN n -> IxN n Source #

isSafeIndex :: IxN n -> IxN n -> Bool Source #

toLinearIndex :: IxN n -> IxN n -> Int Source #

toLinearIndexAcc :: Int -> IxN n -> IxN n -> Int Source #

fromLinearIndex :: IxN n -> Int -> IxN n Source #

fromLinearIndexAcc :: IxN n -> Int -> (Int, IxN n) Source #

repairIndex :: IxN n -> IxN n -> (Int -> Int -> Int) -> (Int -> Int -> Int) -> IxN n Source #

iter :: IxN n -> IxN n -> Int -> (Int -> Int -> Bool) -> a -> (IxN n -> a -> a) -> a Source #

iterM :: Monad m => IxN n -> IxN n -> Int -> (Int -> Int -> Bool) -> a -> (IxN n -> a -> m a) -> m a Source #

iterM_ :: Monad m => IxN n -> IxN n -> Int -> (Int -> Int -> Bool) -> (IxN n -> m a) -> m () Source #

Index (IxN 3) Source # 

Associated Types

type Rank (IxN 3) :: Nat Source #

Methods

rank :: IxN 3 -> Dim Source #

totalElem :: IxN 3 -> Int Source #

consDim :: Int -> Lower (IxN 3) -> IxN 3 Source #

unconsDim :: IxN 3 -> (Int, Lower (IxN 3)) Source #

snocDim :: Lower (IxN 3) -> Int -> IxN 3 Source #

unsnocDim :: IxN 3 -> (Lower (IxN 3), Int) Source #

dropDim :: IxN 3 -> Dim -> Maybe (Lower (IxN 3)) Source #

getIndex :: IxN 3 -> Dim -> Maybe Int Source #

setIndex :: IxN 3 -> Dim -> Int -> Maybe (IxN 3) Source #

pureIndex :: Int -> IxN 3 Source #

liftIndex2 :: (Int -> Int -> Int) -> IxN 3 -> IxN 3 -> IxN 3 Source #

zeroIndex :: IxN 3 Source #

liftIndex :: (Int -> Int) -> IxN 3 -> IxN 3 Source #

isSafeIndex :: IxN 3 -> IxN 3 -> Bool Source #

toLinearIndex :: IxN 3 -> IxN 3 -> Int Source #

toLinearIndexAcc :: Int -> IxN 3 -> IxN 3 -> Int Source #

fromLinearIndex :: IxN 3 -> Int -> IxN 3 Source #

fromLinearIndexAcc :: IxN 3 -> Int -> (Int, IxN 3) Source #

repairIndex :: IxN 3 -> IxN 3 -> (Int -> Int -> Int) -> (Int -> Int -> Int) -> IxN 3 Source #

iter :: IxN 3 -> IxN 3 -> Int -> (Int -> Int -> Bool) -> a -> (IxN 3 -> a -> a) -> a Source #

iterM :: Monad m => IxN 3 -> IxN 3 -> Int -> (Int -> Int -> Bool) -> a -> (IxN 3 -> a -> m a) -> m a Source #

iterM_ :: Monad m => IxN 3 -> IxN 3 -> Int -> (Int -> Int -> Bool) -> (IxN 3 -> m a) -> m () Source #

errorIx :: (Show ix, Show ix') => String -> ix -> ix' -> a Source #

Helper function for throwing out of bounds errors

errorSizeMismatch :: (Show ix, Show ix') => String -> ix -> ix' -> a Source #

Helper function for throwing error when sizes do not match

isSafeSize :: Index ix => ix -> Bool Source #

Checks whether the size is valid.

isNonEmpty :: Index ix => ix -> Bool Source #

Checks whether array with this size can hold at least one element.

headDim :: Index ix => ix -> Int Source #

tailDim :: Index ix => ix -> Lower ix Source #

lastDim :: Index ix => ix -> Int Source #

initDim :: Index ix => ix -> Lower ix Source #

iterLinearM Source #

Arguments

:: (Index ix, Monad m) 
=> ix

Size

-> Int

Linear start

-> Int

Linear end

-> Int

Increment

-> (Int -> Int -> Bool)

Continuation condition (continue if True)

-> a

Accumulator

-> (Int -> ix -> a -> m a) 
-> m a 

Iterate over N-dimensional space from start to end with accumulator

iterLinearM_ Source #

Arguments

:: (Index ix, Monad m) 
=> ix

Size

-> Int

Start

-> Int

End

-> Int

Increment

-> (Int -> Int -> Bool)

Continuation condition

-> (Int -> ix -> m ())

Monadic action that takes index in both forms

-> m () 

loop :: Int -> (Int -> Bool) -> (Int -> Int) -> a -> (Int -> a -> a) -> a Source #

Efficient loop with an accumulator

loopM :: Monad m => Int -> (Int -> Bool) -> (Int -> Int) -> a -> (Int -> a -> m a) -> m a Source #

Very efficient monadic loop with an accumulator

loopM_ :: Monad m => Int -> (Int -> Bool) -> (Int -> Int) -> (Int -> m a) -> m () Source #

Efficient monadic loop. Result of each iteration is discarded.

loopDeepM :: Monad m => Int -> (Int -> Bool) -> (Int -> Int) -> a -> (Int -> a -> m a) -> m a Source #

Less efficient monadic loop with an accumulator that reverses the direction of action application