massiv-io-0.1.9.0: Import/export of Image files into massiv Arrays

Copyright(c) Alexey Kuleshevich 2016-2019
LicenseBSD3
MaintainerAlexey Kuleshevich <lehins@yandex.ru>
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Graphics.ColorSpace.Complex

Contents

Description

 
Synopsis

Rectangular form

data Complex a #

Complex numbers are an algebraic type.

For a complex number z, abs z is a number with the magnitude of z, but oriented in the positive real direction, whereas signum z has the phase of z, but unit magnitude.

The Foldable and Traversable instances traverse the real part first.

Note that Complex's instances inherit the deficiencies from the type parameter's. For example, Complex Float's Ord instance has similar problems to Float's.

Constructors

!a :+ !a infix 6

forms a complex number from its real and imaginary rectangular components.

Instances
Monad Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

(>>=) :: Complex a -> (a -> Complex b) -> Complex b #

(>>) :: Complex a -> Complex b -> Complex b #

return :: a -> Complex a #

fail :: String -> Complex a #

Functor Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

fmap :: (a -> b) -> Complex a -> Complex b #

(<$) :: a -> Complex b -> Complex a #

Applicative Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

pure :: a -> Complex a #

(<*>) :: Complex (a -> b) -> Complex a -> Complex b #

liftA2 :: (a -> b -> c) -> Complex a -> Complex b -> Complex c #

(*>) :: Complex a -> Complex b -> Complex b #

(<*) :: Complex a -> Complex b -> Complex a #

Foldable Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

fold :: Monoid m => Complex m -> m #

foldMap :: Monoid m => (a -> m) -> Complex a -> m #

foldr :: (a -> b -> b) -> b -> Complex a -> b #

foldr' :: (a -> b -> b) -> b -> Complex a -> b #

foldl :: (b -> a -> b) -> b -> Complex a -> b #

foldl' :: (b -> a -> b) -> b -> Complex a -> b #

foldr1 :: (a -> a -> a) -> Complex a -> a #

foldl1 :: (a -> a -> a) -> Complex a -> a #

toList :: Complex a -> [a] #

null :: Complex a -> Bool #

length :: Complex a -> Int #

elem :: Eq a => a -> Complex a -> Bool #

maximum :: Ord a => Complex a -> a #

minimum :: Ord a => Complex a -> a #

sum :: Num a => Complex a -> a #

product :: Num a => Complex a -> a #

Traversable Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

traverse :: Applicative f => (a -> f b) -> Complex a -> f (Complex b) #

sequenceA :: Applicative f => Complex (f a) -> f (Complex a) #

mapM :: Monad m => (a -> m b) -> Complex a -> m (Complex b) #

sequence :: Monad m => Complex (m a) -> m (Complex a) #

Hashable1 Complex 
Instance details

Defined in Data.Hashable.Class

Methods

liftHashWithSalt :: (Int -> a -> Int) -> Int -> Complex a -> Int #

Unbox a => Vector Vector (Complex a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => MVector MVector (Complex a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Eq a => Eq (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

(==) :: Complex a -> Complex a -> Bool #

(/=) :: Complex a -> Complex a -> Bool #

RealFloat a => Floating (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

pi :: Complex a #

exp :: Complex a -> Complex a #

log :: Complex a -> Complex a #

sqrt :: Complex a -> Complex a #

(**) :: Complex a -> Complex a -> Complex a #

logBase :: Complex a -> Complex a -> Complex a #

sin :: Complex a -> Complex a #

cos :: Complex a -> Complex a #

tan :: Complex a -> Complex a #

asin :: Complex a -> Complex a #

acos :: Complex a -> Complex a #

atan :: Complex a -> Complex a #

sinh :: Complex a -> Complex a #

cosh :: Complex a -> Complex a #

tanh :: Complex a -> Complex a #

asinh :: Complex a -> Complex a #

acosh :: Complex a -> Complex a #

atanh :: Complex a -> Complex a #

log1p :: Complex a -> Complex a #

expm1 :: Complex a -> Complex a #

log1pexp :: Complex a -> Complex a #

log1mexp :: Complex a -> Complex a #

RealFloat a => Fractional (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

(/) :: Complex a -> Complex a -> Complex a #

recip :: Complex a -> Complex a #

fromRational :: Rational -> Complex a #

Data a => Data (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Complex a -> c (Complex a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Complex a) #

toConstr :: Complex a -> Constr #

dataTypeOf :: Complex a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Complex a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Complex a)) #

gmapT :: (forall b. Data b => b -> b) -> Complex a -> Complex a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Complex a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Complex a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) #

RealFloat a => Num (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

(+) :: Complex a -> Complex a -> Complex a #

(-) :: Complex a -> Complex a -> Complex a #

(*) :: Complex a -> Complex a -> Complex a #

negate :: Complex a -> Complex a #

abs :: Complex a -> Complex a #

signum :: Complex a -> Complex a #

fromInteger :: Integer -> Complex a #

Read a => Read (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Show a => Show (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

showsPrec :: Int -> Complex a -> ShowS #

show :: Complex a -> String #

showList :: [Complex a] -> ShowS #

Generic (Complex a) 
Instance details

Defined in Data.Complex

Associated Types

type Rep (Complex a) :: Type -> Type #

Methods

from :: Complex a -> Rep (Complex a) x #

to :: Rep (Complex a) x -> Complex a #

Storable a => Storable (Complex a)

Since: base-4.8.0.0

Instance details

Defined in Data.Complex

Methods

sizeOf :: Complex a -> Int #

alignment :: Complex a -> Int #

peekElemOff :: Ptr (Complex a) -> Int -> IO (Complex a) #

pokeElemOff :: Ptr (Complex a) -> Int -> Complex a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Complex a) #

pokeByteOff :: Ptr b -> Int -> Complex a -> IO () #

peek :: Ptr (Complex a) -> IO (Complex a) #

poke :: Ptr (Complex a) -> Complex a -> IO () #

(Default a, RealFloat a) => Default (Complex a) 
Instance details

Defined in Data.Default.Class

Methods

def :: Complex a #

NFData a => NFData (Complex a) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Complex a -> () #

Hashable a => Hashable (Complex a) 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Complex a -> Int #

hash :: Complex a -> Int #

Unbox a => Unbox (Complex a) 
Instance details

Defined in Data.Vector.Unboxed.Base

(Num e, Elevator e, RealFloat e) => Elevator (Complex e) Source #

Discards imaginary part and changes precision of real part.

Instance details

Defined in Graphics.ColorSpace.Elevator

Generic1 Complex 
Instance details

Defined in Data.Complex

Associated Types

type Rep1 Complex :: k -> Type #

Methods

from1 :: Complex a -> Rep1 Complex a #

to1 :: Rep1 Complex a -> Complex a #

newtype MVector s (Complex a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Complex a) = MV_Complex (MVector s (a, a))
type Rep (Complex a)

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

newtype Vector (Complex a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Complex a) = V_Complex (Vector (a, a))
type Rep1 Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

(+:) :: ColorSpace cs e => Pixel cs e -> Pixel cs e -> Pixel cs (Complex e) infix 6 Source #

Constrcut a complex pixel from two pixels representing real and imaginary parts.

 PixelRGB 4 8 6 +: PixelRGB 7 1 1 == PixelRGB (4 :+ 7) (8 :+ 1) (6 :+ 1)

realPart :: (ColorSpace cs e, RealFloat e) => Pixel cs (Complex e) -> Pixel cs e Source #

Extracts the real part of a complex pixel.

imagPart :: (ColorSpace cs e, RealFloat e) => Pixel cs (Complex e) -> Pixel cs e Source #

Extracts the imaginary part of a complex pixel.

Polar form

mkPolar :: (ColorSpace cs e, RealFloat e) => Pixel cs e -> Pixel cs e -> Pixel cs (Complex e) Source #

Form a complex pixel from polar components of magnitude and phase.

cis :: (ColorSpace cs e, RealFloat e) => Pixel cs e -> Pixel cs (Complex e) Source #

cis t is a complex pixel with magnitude 1 and phase t (modulo 2*pi).

polar :: (ColorSpace cs e, RealFloat e) => Pixel cs (Complex e) -> (Pixel cs e, Pixel cs e) Source #

The function polar takes a complex pixel and returns a (magnitude, phase) pair of pixels in canonical form: the magnitude is nonnegative, and the phase in the range (-pi, pi]; if the magnitude is zero, then so is the phase.

magnitude :: (ColorSpace cs e, RealFloat e) => Pixel cs (Complex e) -> Pixel cs e Source #

The nonnegative magnitude of a complex pixel.

phase :: (ColorSpace cs e, RealFloat e) => Pixel cs (Complex e) -> Pixel cs e Source #

The phase of a complex pixel, in the range (-pi, pi]. If the magnitude is zero, then so is the phase.

Conjugate

conjugate :: (ColorSpace cs e, RealFloat e) => Pixel cs (Complex e) -> Pixel cs (Complex e) Source #

The conjugate of a complex pixel.