{-# LANGUAGE TemplateHaskell #-}
module Numeric.MixedTypes.Complex
(
tComplex
)
where
import Numeric.MixedTypes.PreludeHiding
import Utils.TH.DeclForTypes
import Data.Complex
import Numeric.MixedTypes.Literals
import Numeric.MixedTypes.Bool
import Numeric.MixedTypes.Eq
import Numeric.MixedTypes.MinMaxAbs
import Numeric.MixedTypes.AddSub
import Numeric.MixedTypes.Ring
import Numeric.MixedTypes.Field
import Numeric.MixedTypes.Elementary
tComplex :: T t -> T (Complex t)
tComplex (T tName) = T ("(Complex " ++ tName ++ ")")
instance (ConvertibleExactly Integer t) => (ConvertibleExactly Integer (Complex t))
where
safeConvertExactly n =
do
nT <- safeConvertExactly n
zT <- safeConvertExactly 0
return $ nT :+ zT
instance (ConvertibleExactly Int t) => (ConvertibleExactly Int (Complex t))
where
safeConvertExactly n =
do
nT <- safeConvertExactly n
zT <- safeConvertExactly (int 0)
return $ nT :+ zT
instance (ConvertibleExactly Rational t) => (ConvertibleExactly Rational (Complex t))
where
safeConvertExactly r =
do
rT <- safeConvertExactly r
zT <- safeConvertExactly 0.0
return $ rT :+ zT
instance (ConvertibleExactly t1 t2) => (ConvertibleExactly (Complex t1) (Complex t2))
where
safeConvertExactly (a1 :+ i1) =
do
a2 <- safeConvertExactly a1
i2 <- safeConvertExactly i1
return $ a2 :+ i2
instance (HasEqAsymmetric a b) => HasEqAsymmetric (Complex a) (Complex b) where
type EqCompareType (Complex a) (Complex b) = EqCompareType a b
equalTo (a1 :+ i1) (a2 :+ i2) = (a1 == a2) && (i1 == i2)
instance (CanTestInteger t, CanTestZero t) => CanTestInteger (Complex t) where
certainlyNotInteger (a :+ i) =
certainlyNotInteger a || isCertainlyNonZero i
certainlyIntegerGetIt (a :+ i) =
case (certainlyIntegerGetIt a, certainlyIntegerGetIt i) of
(Just aN, Just iN) | iN == 0 -> Just aN
_ -> Nothing
instance CanNeg t => CanNeg (Complex t) where
type NegType (Complex t) = Complex (NegType t)
negate (a :+ i) = (negate a) :+ (negate i)
instance (CanAddAsymmetric a b) => CanAddAsymmetric (Complex a) (Complex b) where
type AddType (Complex a) (Complex b) = Complex (AddType a b)
add (a1 :+ i1) (a2 :+ i2) = (a1 + a2) :+ (i1 + i2)
instance (CanSub a b) => CanSub (Complex a) (Complex b) where
type SubType (Complex a) (Complex b) = Complex (SubType a b)
sub (a1 :+ i1) (a2 :+ i2) = (a1 - a2) :+ (i1 - i2)
instance
(CanMulAsymmetric a b
, CanAddSameType (MulType a b), CanSubSameType (MulType a b))
=>
CanMulAsymmetric (Complex a) (Complex b)
where
type MulType (Complex a) (Complex b) = Complex (MulType a b)
mul (a1 :+ i1) (a2 :+ i2) =
(a1*a2 - i1*i2) :+ (a1*i2 + i1*a2)
instance
(CanMulAsymmetric a b
, CanAddSameType (MulType a b), CanSubSameType (MulType a b)
, CanMulAsymmetric b b, CanAddSameType (MulType b b)
, CanDiv (MulType a b) (MulType b b))
=>
CanDiv (Complex a) (Complex b)
where
type DivType (Complex a) (Complex b) = Complex (DivType (MulType a b) (MulType b b))
divide (a1 :+ i1) (a2 :+ i2) =
let d = a2*a2 + i2*i2 in
((a1*a2 + i1*i2)/d) :+ ((i1*a2-a1*i2)/d)
type DivTypeNoCN (Complex a) (Complex b) = Complex (DivTypeNoCN (MulType a b) (MulType b b))
divideNoCN (a1 :+ i1) (a2 :+ i2) =
let d = a2*a2 + i2*i2 in
((a1*a2 + i1*i2)/!d) :+ ((i1*a2-a1*i2)/!d)
instance
(CanMulAsymmetric t t
, CanAddSameType (MulType t t)
, CanSqrt (MulType t t))
=>
CanAbs (Complex t)
where
type AbsType (Complex t) = SqrtType (MulType t t)
abs (a :+ i) = sqrt (a*a + i*i)
instance
(CanExp t
, CanSinCos t
, CanMulAsymmetric (ExpType t) (SinCosType t))
=>
CanExp (Complex t)
where
type ExpType (Complex t) = Complex (MulType (ExpType t) (SinCosType t))
exp (a :+ i) =
let ea = exp a in
(ea * cos i) :+ (ea * sin i)
$(declForTypes
[[t| Integer |], [t| Int |], [t| Rational |], [t| Double |]]
(\ t -> [d|
instance (HasEqAsymmetric $t b) => HasEqAsymmetric $t (Complex b) where
type EqCompareType $t (Complex b) = EqCompareType $t b
equalTo n (a2 :+ i2) = (n == a2) && (convertExactlyTargetSample n 0 == i2)
instance (HasEqAsymmetric a $t) => HasEqAsymmetric (Complex a) $t where
type EqCompareType (Complex a) $t = EqCompareType a $t
equalTo (a1 :+ i1) n = (a1 == n) && (i1 == convertExactlyTargetSample n 0)
instance (CanAddAsymmetric $t b) => CanAddAsymmetric $t (Complex b) where
type AddType $t (Complex b) = Complex (AddType $t b)
add n (a2 :+ i2) = (n + a2) :+ (convertExactlyTargetSample n 0 + i2)
instance (CanAddAsymmetric a $t) => CanAddAsymmetric (Complex a) $t where
type AddType (Complex a) $t = Complex (AddType a $t)
add (a1 :+ i1) n = (a1 + n) :+ (i1 + (convertExactlyTargetSample n 0))
instance (CanSub $t b) => CanSub $t (Complex b) where
type SubType $t (Complex b) = Complex (SubType $t b)
sub n (a2 :+ i2) = (n - a2) :+ (convertExactlyTargetSample n 0 - i2)
instance (CanSub a $t) => CanSub (Complex a) $t where
type SubType (Complex a) $t = Complex (SubType a $t)
sub (a1 :+ i1) n = (a1 - n) :+ (i1 - (convertExactlyTargetSample n 0))
instance
(CanMulAsymmetric $t b) => CanMulAsymmetric $t (Complex b)
where
type MulType $t (Complex b) = Complex (MulType $t b)
mul n (a2 :+ i2) = (n*a2) :+ (n*i2)
instance
(CanMulAsymmetric a $t) => CanMulAsymmetric (Complex a) $t
where
type MulType (Complex a) $t = Complex (MulType a $t)
mul (a1 :+ i1) n = (a1*n) :+ (i1*n)
instance
(CanMulAsymmetric $t b
, CanMulAsymmetric b b, CanAddSameType (MulType b b)
, CanDiv (MulType $t b) (MulType b b))
=>
CanDiv $t (Complex b)
where
type DivType $t (Complex b) = Complex (DivType (MulType $t b) (MulType b b))
divide n (a2 :+ i2) =
let d = a2*a2 + i2*i2 in
((n*a2)/d) :+ (((-n)*i2)/d)
type DivTypeNoCN $t (Complex b) = Complex (DivTypeNoCN (MulType $t b) (MulType b b))
divideNoCN n (a2 :+ i2) =
let d = a2*a2 + i2*i2 in
((n*a2)/!d) :+ (((-n)*i2)/!d)
instance
(CanDiv a $t) => CanDiv (Complex a) $t
where
type DivType (Complex a) $t = Complex (DivType a $t)
divide (a1 :+ i1) n = (a1/n) :+ (i1/n)
type DivTypeNoCN (Complex a) $t = Complex (DivTypeNoCN a $t)
divideNoCN (a1 :+ i1) n = (a1/!n) :+ (i1/!n)
|]))