module Numeric.OrdGenericBool
(
(==), (/=), (<), (<=), (>), (>=), abs, max, min,
not, (&&), (||)
)
where
import Prelude hiding ((==),(/=),(<),(<=),(>),(>=),abs,max,min,not,(&&),(||))
import qualified MixedTypesNumPrelude as M
infix 4 ==, /=
(==) :: (M.HasEqAsymmetric t t) => t -> t -> (M.EqCompareType t t)
== :: t -> t -> EqCompareType t t
(==) = t -> t -> EqCompareType t t
forall a b. HasEqAsymmetric a b => a -> b -> EqCompareType a b
(M.==)
(/=) :: (M.HasEqAsymmetric t t) => t -> t -> (M.EqCompareType t t)
/= :: t -> t -> EqCompareType t t
(/=) = t -> t -> EqCompareType t t
forall a b. HasEqAsymmetric a b => a -> b -> EqCompareType a b
(M./=)
infix 4 <, <=, >=, >
(<) :: (M.HasOrderAsymmetric t t) => t -> t -> (M.OrderCompareType t t)
< :: t -> t -> OrderCompareType t t
(<) = t -> t -> OrderCompareType t t
forall a b.
HasOrderAsymmetric a b =>
a -> b -> OrderCompareType a b
(M.<)
(<=) :: (M.HasOrderAsymmetric t t) => t -> t -> (M.OrderCompareType t t)
<= :: t -> t -> OrderCompareType t t
(<=) = t -> t -> OrderCompareType t t
forall a b.
HasOrderAsymmetric a b =>
a -> b -> OrderCompareType a b
(M.<=)
(>) :: (M.HasOrderAsymmetric t t) => t -> t -> (M.OrderCompareType t t)
> :: t -> t -> OrderCompareType t t
(>) = t -> t -> OrderCompareType t t
forall a b.
HasOrderAsymmetric a b =>
a -> b -> OrderCompareType a b
(M.>)
(>=) :: (M.HasOrderAsymmetric t t) => t -> t -> (M.OrderCompareType t t)
>= :: t -> t -> OrderCompareType t t
(>=) = t -> t -> OrderCompareType t t
forall a b.
HasOrderAsymmetric a b =>
a -> b -> OrderCompareType a b
(M.>=)
abs :: (M.CanAbsSameType t) => t -> t
abs :: t -> t
abs = (t -> t
forall t. CanAbs t => t -> AbsType t
M.abs)
max :: (M.CanMinMaxSameType t) => t -> t -> t
max :: t -> t -> t
max = (t -> t -> t
forall t1 t2.
CanMinMaxAsymmetric t1 t2 =>
t1 -> t2 -> MinMaxType t1 t2
M.max)
min :: (M.CanMinMaxSameType t) => t -> t -> t
min :: t -> t -> t
min = (t -> t -> t
forall t1 t2.
CanMinMaxAsymmetric t1 t2 =>
t1 -> t2 -> MinMaxType t1 t2
M.min)
infixr 3 &&
infixr 2 ||
(&&) :: (M.CanAndOrSameType t) => t -> t -> t
&& :: t -> t -> t
(&&) = t -> t -> t
forall a b. CanAndOrAsymmetric a b => a -> b -> AndOrType a b
(M.&&)
(||) :: (M.CanAndOrSameType t) => t -> t -> t
|| :: t -> t -> t
(||) = t -> t -> t
forall a b. CanAndOrAsymmetric a b => a -> b -> AndOrType a b
(M.||)
not :: (M.CanNegSameType t) => t -> t
not :: t -> t
not = t -> t
forall t. CanNeg t => t -> NegType t
M.not