--{-# LANGUAGE BangPatterns #-} module CaseBi ( -- * Function that can be used instead of -- -- > case var of -- > a1 -> b1 -- > a2 -> b2 -- > a3 -> b3 -- > ... -- > an -> bn -- > _ -> def -- -- for efficiency getBFst', getBFst, getBFstV, -- * Additional functions that are used to sort a list of pairs (which can be obtained by e. g. Prelude.zip) sortFst, sortFstV, -- ** Function that can be used for changing the Vector (a, b) during its creation filterP ) where import qualified Data.Vector as V (Vector,unsafeHead,unsafeLast,unsafeSlice,length,(!),fromList,map) import qualified Data.List as L (groupBy,nubBy) --import Prelude -- (Bool,Eq,Ord,map,(>=),(<=),(>),(<),(==),(&&),(.),(++),(-),($),filter,otherwise,fst,snd,quot,not,null,dropWhile,concatMap,take,seq,undefined) -- | The function that can be used instead of the 'case ... of' function -- -- > case var of -- > a1 -> b1 -- > a2 -> b2 -- > a3 -> b3 -- > ... -- > an -> bn -- > _ -> defaultValue -- -- The function 'case a of ...' gives the /O(n)/ coplexity of the transformation of a to b here, -- but the function getBFst' tries to give about /O(log n)/ complexity -- The Vector (a, b) must be sorted in ascending order here for the algorithm to be used correctly. For this you can use -- the following functions 'sortFst' and 'sortFstV'. -- -- b before Vector (a, b) in the type definition of the 'getBFst' must be a @defaultValue@ for 'case' above. -- -- Vector (a, b) corresponds to -- -- > a1 -> b1 -- > a2 -> b2 -- > a3 -> b3 -- > ... -- > an -> bn -- getBFst' :: (Ord a) => b -- ^ a default value that can be substituted if there is no correspendence in the set of (a, b) tuples (the 'otherwise' or irrefutable pattern analogue) -> V.Vector (a, b) -- ^ Vector of the (a, b) tuples that must be sorted in ascending order for the first argument. If there are several pairs (a, b) with the same a, -- ^ the function gives a resulting b as if there is only the first one -> a -- ^ an element for which the corresponding resulting b must be found -> b -- ^ the result getBFst' def vec l | if (l < (fst (V.unsafeHead vec))) then True else (l > (fst (V.unsafeLast vec))) = def | (V.length vec >= 2) = if l <= fst (vec V.! (V.length vec `quot` 2)) then getBFst' def (V.unsafeSlice 0 (V.length vec `quot` 2) vec) l else getBFst' def (V.unsafeSlice (V.length vec `quot` 2) (V.length vec - (V.length vec `quot` 2)) vec) l | otherwise = snd (V.unsafeHead vec) -- | The function that uses special kind of bisection to effectively transform the Vector a to Vector b with instead of simply use -- -- > case var of -- > a1 -> b1 -- > a2 -> b2 -- > a3 -> b3 -- > ... -- > an -> bn -- > _ -> defaultValue -- -- The function 'V.map (f (case var of ...)) [a]' gives the /O(n*m)/ coplexity of the transformation of Vector a to Vector b here -- where m is the length of the Vector a (and Vector b respectively here), but the function 'getBFstV' tries to give about /O(m*log n)/ complexity -- The Vector (a, b) must be sorted in ascending order here for the algorithm to be used correctly. For this you can use -- the following functions 'sortFst' and 'sortFstV'. If m >> n than the function gives more efficiency. Even otherwise, -- it can be used to simplify the procedure for optimizing the code for transformation of the Vector data. -- -- b after Vector (a, b) in the type definition of the 'getBFstV' must be a defaultValue for case above. -- -- Vector (a, b) corresponds to -- -- > a1 -> b1 -- > a2 -> b2 -- > a3 -> b3 -- > ... -- > an -> bn -- getBFstV :: (Ord a) => V.Vector (a, b) -- ^ Vector of the (a, b) tuples that are sorted in ascending order for the first argument -> b -- ^ a default value that can be substituted if there is no correspendence in the set of (a, b) tuples (the 'otherwise' or irrefutable pattern analogue) -> V.Vector a -- ^ a Vector needed to be transformed accordingly to the correct (a, b) tuple pairs -> V.Vector b -- ^ the resulting Vector getBFstV c y = V.map (getBFst' y c) -- | The function that uses special kind of bisection to effectively transform the [a] to [b] with instead of simply use -- -- > case var of -- > a1 -> b1 -- > a2 -> b2 -- > a3 -> b3 -- > ... -- > an -> bn -- > _ -> defaultValue -- -- The function 'map (f (case var of ...)) [a]' gives the /O(n*m)/ coplexity of the transformation of [a] to [b] here -- where m is the length of the [a] (and [b] respectively here), but the function 'getBFst' tries to give about /O(m*log n)/ complexity -- The Vector (a, b) must be sorted in ascending order here for the algorithm to be used correctly. For this you can use -- the following functions 'sortFst' and 'sortFstV'. If m >> n than the function gives more efficiency. Even otherwise, -- it can be used to simplify the procedure for optimizing the code for transformation of the list data. -- -- b after Vector (a, b) in the type definition of the 'getBFst' must be a defaultValue for 'case' above. -- -- Vector (a, b) corresponds to -- -- > a1 -> b1 -- > a2 -> b2 -- > a3 -> b3 -- > ... -- > an -> bn -- getBFst :: (Ord a) => V.Vector (a, b) -- ^ Vector of the (a, b) tuples that must be sorted in ascending order for the first argument -> b -- ^ a default value that can be substituted if there is no correspendence in the set of (a, b) tuples (the 'otherwise' or irrefutable pattern analogue) -> [a] -- ^ a list of values needed to be transformed accordingly to the correct (a, b) tuple pairs -> [b] -- ^ the resulting list getBFst c y = map (getBFst' y c) -- | Function that sorts a list of (a, b) tuples by the first argument (@a@ must be an instance of class Ord) -- and is inspired by Data.List.sort function (the last one can be used for sorting the (a, b) tuples where both the types of a and b -- have instances of the class Ord). It is inspired by the work: https://wiki.haskell.org/Introduction sortFst :: (Ord a) => [(a, b)] -> [(a, b)] sortFst xs | not . null $ xs = let z = fst . head $ xs in sortFst (filter (\(x, _) -> x < z) xs) ++ filter (\(x, _) -> x == z) xs ++ sortFst (filter (\(x, _) -> x > z) xs) | otherwise = [] -- | Function that prepares the list of (a, b) tuples representing the -- -- > case var of -- > a1 -> b1 -- > a2 -> b2 -- > a3 -> b3 -- > ... -- > an -> bn -- > _ -> defaultValue -- -- for usage in the 'getBFst' and 'getBFstV' functions. @a@ must be an instance of class Ord. -- -- The resulting vector has for every @a@ only one element, which was the first in the list of tuples (a, b) after sorting by 'sortFst' function. -- sortFstV :: (Ord a) => [(a, b)] -> V.Vector (a, b) sortFstV = V.fromList . L.nubBy (\x y -> fst x == fst y) . sortFst -- | The function that is used to filter a list [(a, b)] of the corresponding values for getFstB' to obtain the Vector (a, b) -- such that the b element for the sequence of pairs (a, b) with the same a is selected by the predicate p and is not necessarily the first one -- as it is for the getFstB' function and its successors by default. filterP :: (Ord a) => ((a, b) -> Bool) -- ^ The predicate p used to select the only one value of b in the pairs (a, b) with the same a. -- ^ If there are several pairs (a, b) for the same a that satisfies a predicate then the first one is used. For large [(a, b)] -- ^ it can be rather complex. -> [(a, b)] -- ^ The list of (a, b) sorted in the ascending order by the first element a (e. g. by the 'sortFst' function) -> V.Vector (a, b) -- ^ The resulting filtered Vector (a, b) that can be used for getFstB' and its successor functions -- -- Example: -- -- > filterP (\(t, w) -> (t == "1") || (w > 'f')) . sortFst $ [("1",'a'),("4a",'k'),("4a",'b'),("4a",'c'),("4a",'d'),("4a",'e'),("b7",'c'),("b7",'k')] = [("1",'a'),("4a",'k'),("b7",'k')] -- filterP p xs = V.fromList . concatMap (\x -> take 1 . dropWhile (not . p) $ x) $ L.groupBy (\(x1,_) (x2,_) -> x1 == x2) xs