| Safe Haskell | None | 
|---|---|
| Language | Haskell2010 | 
Math.Modularity.Sparse
Synopsis
- getModularity :: LabelVector -> AdjacencyMatrix -> Q
 - getBModularity :: LabelVector -> B -> Q
 - newtype Q = Q {}
 - testModularity :: (Bool, Q, Q)
 
Documentation
getModularity :: LabelVector -> AdjacencyMatrix -> Q Source #
Find modularity from a vector of community labels (0 or 1) corresponding to rows in the adjacency matrix. Needs 0s on the diagonal for the adjacency matrix.
getBModularity :: LabelVector -> B -> Q Source #
Find modularity from a vector of community labels (0 or 1) corresponding to rows in the normalized matrix B. See Shu et al., "Efficient Spectral Neighborhood Blocking for Entity Resolution", 2011. L = sum_i^n sum_j^n A(i,j) - n = 1^TA1 - n = (B^T1)^T(B^T1) - n.