|
|
|
|
| Synopsis |
|
|
|
| Documentation |
|
| module Data.Monoid.Reducer |
|
|
Instances | | Typeable1 BitSet | | Enum a => Reducer a (BitSet a) | | Enum a => Module Natural (BitSet a) | | Enum a => RightModule Natural (BitSet a) | | Enum a => LeftModule Natural (BitSet a) | | (Bounded a, Enum a) => Algebra Natural (BitSet a) | | (Enum a, Bounded a) => Bounded (BitSet a) | | (Enum a, Bounded a) => Enum (BitSet a) | | Eq (BitSet a) | | Typeable a => Data (BitSet a) | | Ord (BitSet a) | | Show (BitSet a) | | Enum a => Monoid (BitSet a) | | Enum a => Generator (BitSet a) | | (Bounded a, Enum a) => Multiplicative (BitSet a) | | (Bounded a, Enum a) => RightSemiNearRing (BitSet a) | | (Bounded a, Enum a) => LeftSemiNearRing (BitSet a) | | (Bounded a, Enum a) => SemiRing (BitSet a) | | (Bounded a, Enum a) => Module (BitSet a) (BitSet a) | | (Bounded a, Enum a) => RightModule (BitSet a) (BitSet a) | | (Bounded a, Enum a) => LeftModule (BitSet a) (BitSet a) |
|
|
|
|
| The empty bit set.
|
|
|
|
|
| Is the bit set empty? Asymptotically faster than checking if size == 0 in some cases.
|
|
|
|
|
|
|
| O(d) Insert an item into the bit set.
|
|
|
| O(d) Delete an item from the bit set.
|
|
|
| O(d * n) Make a BitSet from a list of items.
|
|
|
|
|
| O(d) convert to an Integer representation. Discards negative elements
|
|
|
|
|
| O(testBit on Integer) Ask whether the item is in the bit set.
|
|
|
| O(1) or O(d) The number of elements in the bit set.
|
|
| Produced by Haddock version 2.4.2 |