morley-1.10.0: Developer tools for the Michelson Language
Safe HaskellNone
LanguageHaskell2010

Michelson.Typed.Instr

Description

Module, containing data types for Michelson value.

Synopsis

Documentation

data Instr (inp :: [T]) (out :: [T]) where Source #

Representation of Michelson instruction or sequence of instructions.

Each Michelson instruction is represented by exactly one constructor of this data type. Sequence of instructions is represented with use of Seq constructor in following way: SWAP; DROP ; DUP; -> SWAP Seq DROP Seq DUP. Special case where there are no instructions is represented by constructor Nop, e.g. IF_NONE {} { SWAP; DROP; } -> IF_NONE Nop (SWAP Seq DROP).

Type parameter inp states for input stack type. That is, type of the stack that is required for operation to execute.

Type parameter out states for output stack type or type of stack that will be left after instruction's execution.

Constructors

WithLoc :: InstrCallStack -> Instr a b -> Instr a b

A wrapper carrying original source location of the instruction.

TODO [#283]: replace this wrapper with something more clever and abstract.

InstrWithNotes :: PackedNotes b -> Instr a b -> Instr a b

A wrapper for instruction that also contain annotations for the top type on the result stack.

As of now, when converting from untyped representation, we only preserve field annotations and type annotations in PackedNotes. Variable annotations are preserved in InstrWithVarNotes.

This can wrap only instructions with at least one non-failing execution branch.

InstrWithVarNotes :: NonEmpty VarAnn -> Instr a b -> Instr a b

A wrapper for instruction with variable annotations.

FrameInstr :: forall a b s. (KnownList a, KnownList b) => Proxy s -> Instr a b -> Instr (a ++ s) (b ++ s)

Execute given instruction on truncated stack.

This can wrap only instructions with at least one non-failing execution branch.

Morley has no such instruction, it is used solely in eDSLs. This instruction is sound because for all Michelson instructions the following property holds: if some code accepts stack i and produces stack o, when it can also be run on stack i + s producing stack o + s; and also because Michelson never makes implicit assumptions on types, rather you have to express all "yet ambiguous" type information in code. We could make this not an instruction but rather a function which modifies an instruction (this would also automatically prove soundness of used transformation), but it occured to be tricky (in particular for TestAssert and DipN and family), so let's leave this for future work.

Seq :: Instr a b -> Instr b c -> Instr a c 
Nop :: Instr s s

Nop operation. Missing in Michelson spec, added to parse construction like `IF {} { SWAP; DROP; }`.

Ext :: ExtInstr s -> Instr s s 
Nested :: Instr inp out -> Instr inp out

Nested wrapper is going to wrap a sequence of instructions with { }. It is crucial because serialisation of a contract depends on precise structure of its code.

DocGroup :: DocGrouping -> Instr inp out -> Instr inp out

Places documentation generated for given instruction under some group. This is not part of ExtInstr because it does not behave like Nop; instead, it inherits behaviour of instruction put within it.

AnnCAR :: FieldAnn -> Instr ('TPair a b ': s) (a ': s)

Variants of CAR/CDR to retain field annotations as they relate to the input stack, and hence won't be available from the annotation notes from the result stack we pack with the instructions during type check.

AnnCDR :: FieldAnn -> Instr ('TPair a b ': s) (b ': s) 
DROP :: Instr (a ': s) s 
DROPN :: forall (n :: Peano) s. (SingI n, KnownPeano n, RequireLongerOrSameLength s n, NFData (Sing n)) => Sing n -> Instr s (Drop n s) 
DUP :: Instr (a ': s) (a ': (a ': s)) 
SWAP :: Instr (a ': (b ': s)) (b ': (a ': s)) 
DIG :: forall (n :: Peano) inp out a. (ConstraintDIG n inp out a, NFData (Sing n)) => Sing n -> Instr inp out 
DUG :: forall (n :: Peano) inp out a. (ConstraintDUG n inp out a, NFData (Sing n)) => Sing n -> Instr inp out 
PUSH :: forall t s. ConstantScope t => Value' Instr t -> Instr s (t ': s) 
SOME :: Instr (a ': s) ('TOption a ': s) 
NONE :: forall a s. KnownT a => Instr s ('TOption a ': s) 
UNIT :: Instr s ('TUnit ': s) 
IF_NONE :: Instr s s' -> Instr (a ': s) s' -> Instr ('TOption a ': s) s' 
AnnPAIR :: TypeAnn -> FieldAnn -> FieldAnn -> Instr (a ': (b ': s)) ('TPair a b ': s)

Annotations for PAIR instructions can be different from notes presented on the stack in case of special field annotations, so we carry annotations for instruction separately from notes.

LEFT :: forall b a s. KnownT b => Instr (a ': s) ('TOr a b ': s) 
RIGHT :: forall a b s. KnownT a => Instr (b ': s) ('TOr a b ': s) 
IF_LEFT :: Instr (a ': s) s' -> Instr (b ': s) s' -> Instr ('TOr a b ': s) s' 
NIL :: KnownT p => Instr s ('TList p ': s) 
CONS :: Instr (a ': ('TList a ': s)) ('TList a ': s) 
IF_CONS :: Instr (a ': ('TList a ': s)) s' -> Instr s s' -> Instr ('TList a ': s) s' 
SIZE :: SizeOp c => Instr (c ': s) ('TNat ': s) 
EMPTY_SET :: (KnownT e, Comparable e) => Instr s ('TSet e ': s) 
EMPTY_MAP :: (KnownT a, KnownT b, Comparable a) => Instr s ('TMap a b ': s) 
EMPTY_BIG_MAP :: (KnownT a, KnownT b, Comparable a) => Instr s ('TBigMap a b ': s) 
MAP :: (MapOp c, KnownT b) => Instr (MapOpInp c ': s) (b ': s) -> Instr (c ': s) (MapOpRes c b ': s) 
ITER :: IterOp c => Instr (IterOpEl c ': s) s -> Instr (c ': s) s 
MEM :: MemOp c => Instr (MemOpKey c ': (c ': s)) ('TBool ': s) 
GET :: (GetOp c, KnownT (GetOpVal c)) => Instr (GetOpKey c ': (c ': s)) ('TOption (GetOpVal c) ': s) 
UPDATE :: UpdOp c => Instr (UpdOpKey c ': (UpdOpParams c ': (c ': s))) (c ': s) 
IF :: Instr s s' -> Instr s s' -> Instr ('TBool ': s) s' 
LOOP :: Instr s ('TBool ': s) -> Instr ('TBool ': s) s 
LOOP_LEFT :: Instr (a ': s) ('TOr a b ': s) -> Instr ('TOr a b ': s) (b ': s) 
LAMBDA :: forall i o s. (KnownT i, KnownT o) => Value' Instr ('TLambda i o) -> Instr s ('TLambda i o ': s) 
EXEC :: Instr (t1 ': ('TLambda t1 t2 ': s)) (t2 ': s) 
APPLY :: forall a b c s. (ConstantScope a, KnownT b) => Instr (a ': ('TLambda ('TPair a b) c ': s)) ('TLambda b c ': s) 
DIP :: Instr a c -> Instr (b ': a) (b ': c) 
DIPN :: forall (n :: Peano) inp out s s'. (ConstraintDIPN n inp out s s', NFData (Sing n)) => Sing n -> Instr s s' -> Instr inp out 
FAILWITH :: KnownT a => Instr (a ': s) t 
CAST :: forall a s. SingI a => Instr (a ': s) (a ': s) 
RENAME :: Instr (a ': s) (a ': s) 
PACK :: PackedValScope a => Instr (a ': s) ('TBytes ': s) 
UNPACK :: (UnpackedValScope a, KnownT a) => Instr ('TBytes ': s) ('TOption a ': s) 
CONCAT :: ConcatOp c => Instr (c ': (c ': s)) (c ': s) 
CONCAT' :: ConcatOp c => Instr ('TList c ': s) (c ': s) 
SLICE :: (SliceOp c, KnownT c) => Instr ('TNat ': ('TNat ': (c ': s))) ('TOption c ': s) 
ISNAT :: Instr ('TInt ': s) ('TOption 'TNat ': s) 
ADD :: (ArithOp Add n m, Typeable n, Typeable m) => Instr (n ': (m ': s)) (ArithRes Add n m ': s) 
SUB :: (ArithOp Sub n m, Typeable n, Typeable m) => Instr (n ': (m ': s)) (ArithRes Sub n m ': s) 
MUL :: (ArithOp Mul n m, Typeable n, Typeable m) => Instr (n ': (m ': s)) (ArithRes Mul n m ': s) 
EDIV :: EDivOp n m => Instr (n ': (m ': s)) ('TOption ('TPair (EDivOpRes n m) (EModOpRes n m)) ': s) 
ABS :: UnaryArithOp Abs n => Instr (n ': s) (UnaryArithRes Abs n ': s) 
NEG :: UnaryArithOp Neg n => Instr (n ': s) (UnaryArithRes Neg n ': s) 
LSL :: (ArithOp Lsl n m, Typeable n, Typeable m) => Instr (n ': (m ': s)) (ArithRes Lsl n m ': s) 
LSR :: (ArithOp Lsr n m, Typeable n, Typeable m) => Instr (n ': (m ': s)) (ArithRes Lsr n m ': s) 
OR :: (ArithOp Or n m, Typeable n, Typeable m) => Instr (n ': (m ': s)) (ArithRes Or n m ': s) 
AND :: (ArithOp And n m, Typeable n, Typeable m) => Instr (n ': (m ': s)) (ArithRes And n m ': s) 
XOR :: (ArithOp Xor n m, Typeable n, Typeable m) => Instr (n ': (m ': s)) (ArithRes Xor n m ': s) 
NOT :: UnaryArithOp Not n => Instr (n ': s) (UnaryArithRes Not n ': s) 
COMPARE :: (Comparable n, KnownT n) => Instr (n ': (n ': s)) ('TInt ': s) 
EQ :: UnaryArithOp Eq' n => Instr (n ': s) (UnaryArithRes Eq' n ': s) 
NEQ :: UnaryArithOp Neq n => Instr (n ': s) (UnaryArithRes Neq n ': s) 
LT :: UnaryArithOp Lt n => Instr (n ': s) (UnaryArithRes Lt n ': s) 
GT :: UnaryArithOp Gt n => Instr (n ': s) (UnaryArithRes Gt n ': s) 
LE :: UnaryArithOp Le n => Instr (n ': s) (UnaryArithRes Le n ': s) 
GE :: UnaryArithOp Ge n => Instr (n ': s) (UnaryArithRes Ge n ': s) 
INT :: Instr ('TNat ': s) ('TInt ': s) 
SELF :: forall (arg :: T) s. ParameterScope arg => SomeEntrypointCallT arg -> Instr s ('TContract arg ': s) 
CONTRACT :: ParameterScope p => Notes p -> EpName -> Instr ('TAddress ': s) ('TOption ('TContract p) ': s) 
TRANSFER_TOKENS :: ParameterScope p => Instr (p ': ('TMutez ': ('TContract p ': s))) ('TOperation ': s) 
SET_DELEGATE :: Instr ('TOption 'TKeyHash ': s) ('TOperation ': s) 
CREATE_CONTRACT :: (ParameterScope p, StorageScope g) => Contract p g -> Instr ('TOption 'TKeyHash ': ('TMutez ': (g ': s))) ('TOperation ': ('TAddress ': s)) 
IMPLICIT_ACCOUNT :: Instr ('TKeyHash ': s) ('TContract 'TUnit ': s) 
NOW :: Instr s ('TTimestamp ': s) 
AMOUNT :: Instr s ('TMutez ': s) 
BALANCE :: Instr s ('TMutez ': s) 
CHECK_SIGNATURE :: Instr ('TKey ': ('TSignature ': ('TBytes ': s))) ('TBool ': s) 
SHA256 :: Instr ('TBytes ': s) ('TBytes ': s) 
SHA512 :: Instr ('TBytes ': s) ('TBytes ': s) 
BLAKE2B :: Instr ('TBytes ': s) ('TBytes ': s) 
HASH_KEY :: Instr ('TKey ': s) ('TKeyHash ': s) 
SOURCE :: Instr s ('TAddress ': s) 
SENDER :: Instr s ('TAddress ': s) 
ADDRESS :: Instr ('TContract a ': s) ('TAddress ': s) 
CHAIN_ID :: Instr s ('TChainId ': s) 

Instances

Instances details
IsoValue Operation Source # 
Instance details

Defined in Michelson.Typed.Haskell.Value

Associated Types

type ToT Operation :: T Source #

TypeHasDoc Operation Source # 
Instance details

Defined in Michelson.Typed.Haskell.Doc

UnpackedValScope t => FromExpression (Value t) Source # 
Instance details

Defined in Morley.Micheline.Class

(SingI t, HasNoOp t) => ToExpression (Value t) Source # 
Instance details

Defined in Morley.Micheline.Class

Eq (Instr inp out) Source # 
Instance details

Defined in Michelson.Typed.Convert

Methods

(==) :: Instr inp out -> Instr inp out -> Bool #

(/=) :: Instr inp out -> Instr inp out -> Bool #

Show (Instr inp out) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

showsPrec :: Int -> Instr inp out -> ShowS #

show :: Instr inp out -> String #

showList :: [Instr inp out] -> ShowS #

Semigroup (Instr s s) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

(<>) :: Instr s s -> Instr s s -> Instr s s #

sconcat :: NonEmpty (Instr s s) -> Instr s s #

stimes :: Integral b => b -> Instr s s -> Instr s s #

Monoid (Instr s s) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

mempty :: Instr s s #

mappend :: Instr s s -> Instr s s -> Instr s s #

mconcat :: [Instr s s] -> Instr s s #

NFData (Instr out inp) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

rnf :: Instr out inp -> () #

(SingI t, HasNoOp t) => Buildable (Value' Instr t) Source # 
Instance details

Defined in Michelson.Typed.Convert

Methods

build :: Value' Instr t -> Builder #

(KnownT inp, KnownT out) => FromExpression (Instr '[inp] '[out]) Source # 
Instance details

Defined in Morley.Micheline.Class

ToExpression (Instr inp out) Source # 
Instance details

Defined in Morley.Micheline.Class

Methods

toExpression :: Instr inp out -> Expression Source #

type ToT Operation Source # 
Instance details

Defined in Michelson.Typed.Haskell.Value

type TypeDocFieldDescriptions Operation Source # 
Instance details

Defined in Michelson.Typed.Haskell.Doc

data ExtInstr s Source #

Instances

Instances details
Show (ExtInstr s) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

showsPrec :: Int -> ExtInstr s -> ShowS #

show :: ExtInstr s -> String #

showList :: [ExtInstr s] -> ShowS #

Generic (ExtInstr s) Source # 
Instance details

Defined in Michelson.Typed.Instr

Associated Types

type Rep (ExtInstr s) :: Type -> Type #

Methods

from :: ExtInstr s -> Rep (ExtInstr s) x #

to :: Rep (ExtInstr s) x -> ExtInstr s #

NFData (ExtInstr s) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

rnf :: ExtInstr s -> () #

type Rep (ExtInstr s) Source # 
Instance details

Defined in Michelson.Typed.Instr

data CommentType Source #

Instances

Instances details
Show CommentType Source # 
Instance details

Defined in Michelson.Typed.Instr

Generic CommentType Source # 
Instance details

Defined in Michelson.Typed.Instr

Associated Types

type Rep CommentType :: Type -> Type #

NFData CommentType Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

rnf :: CommentType -> () #

type Rep CommentType Source # 
Instance details

Defined in Michelson.Typed.Instr

data StackRef (st :: [T]) where Source #

A reference into the stack of a given type.

Constructors

StackRef :: (KnownPeano idx, SingI idx, RequireLongerThan st idx) => Sing (idx :: Peano) -> StackRef st

Keeps 0-based index to a stack element counting from the top.

Instances

Instances details
Eq (StackRef st) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

(==) :: StackRef st -> StackRef st -> Bool #

(/=) :: StackRef st -> StackRef st -> Bool #

Show (StackRef st) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

showsPrec :: Int -> StackRef st -> ShowS #

show :: StackRef st -> String #

showList :: [StackRef st] -> ShowS #

NFData (StackRef st) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

rnf :: StackRef st -> () #

mkStackRef :: forall (gn :: Nat) st n. (n ~ ToPeano gn, SingI n, KnownPeano n, RequireLongerThan st n) => StackRef st Source #

Create a stack reference, performing checks at compile time.

newtype PrintComment (st :: [T]) Source #

A print format with references into the stack

Constructors

PrintComment 

Instances

Instances details
Eq (PrintComment st) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

(==) :: PrintComment st -> PrintComment st -> Bool #

(/=) :: PrintComment st -> PrintComment st -> Bool #

Show (PrintComment st) Source # 
Instance details

Defined in Michelson.Typed.Instr

IsString (PrintComment st) Source # 
Instance details

Defined in Michelson.Typed.Instr

Generic (PrintComment st) Source # 
Instance details

Defined in Michelson.Typed.Instr

Associated Types

type Rep (PrintComment st) :: Type -> Type #

Methods

from :: PrintComment st -> Rep (PrintComment st) x #

to :: Rep (PrintComment st) x -> PrintComment st #

Semigroup (PrintComment st) Source # 
Instance details

Defined in Michelson.Typed.Instr

Monoid (PrintComment st) Source # 
Instance details

Defined in Michelson.Typed.Instr

NFData (PrintComment st) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

rnf :: PrintComment st -> () #

type Rep (PrintComment st) Source # 
Instance details

Defined in Michelson.Typed.Instr

type Rep (PrintComment st) = D1 ('MetaData "PrintComment" "Michelson.Typed.Instr" "morley-1.10.0-inplace" 'True) (C1 ('MetaCons "PrintComment" 'PrefixI 'True) (S1 ('MetaSel ('Just "unPrintComment") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Either Text (StackRef st)])))

data TestAssert (s :: [T]) where Source #

Constructors

TestAssert :: Typeable out => Text -> PrintComment inp -> Instr inp ('TBool ': out) -> TestAssert inp 

Instances

Instances details
Typeable s => Eq (TestAssert s) Source # 
Instance details

Defined in Michelson.Typed.Convert

Methods

(==) :: TestAssert s -> TestAssert s -> Bool #

(/=) :: TestAssert s -> TestAssert s -> Bool #

Show (TestAssert s) Source # 
Instance details

Defined in Michelson.Typed.Instr

NFData (TestAssert s) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

rnf :: TestAssert s -> () #

type ContractCode cp st = Instr (ContractInp cp st) (ContractOut st) Source #

data Contract cp st Source #

Typed contract and information about annotations which is not present in the contract code.

Instances

Instances details
Eq (ContractCode cp st) => Eq (Contract cp st) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

(==) :: Contract cp st -> Contract cp st -> Bool #

(/=) :: Contract cp st -> Contract cp st -> Bool #

Show (Contract cp st) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

showsPrec :: Int -> Contract cp st -> ShowS #

show :: Contract cp st -> String #

showList :: [Contract cp st] -> ShowS #

NFData (Contract cp st) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

rnf :: Contract cp st -> () #

ToExpression (Contract cp st) Source # 
Instance details

Defined in Morley.Micheline.Class

mapContractCode :: (ContractCode cp st -> ContractCode cp st) -> Contract cp st -> Contract cp st Source #

mapEntriesOrdered :: Contract cp st -> (ParamNotes cp -> a) -> (Notes st -> a) -> (ContractCode cp st -> a) -> [a] Source #

Map each typed contract fields by the given function and sort the output based on the EntriesOrder.

pattern CAR :: () => (i ~ ('TPair a b ': s), o ~ (a ': s)) => Instr i o Source #

pattern CDR :: () => (i ~ ('TPair a b ': s), o ~ (b ': s)) => Instr i o Source #

pattern PAIR :: () => (i ~ (a ': (b ': s)), o ~ ('TPair a b ': s)) => Instr i o Source #

pattern UNPAIR :: () => (i ~ ('TPair a b ': s), o ~ (a ': (b ': s))) => Instr i o Source #

data PackedNotes a where Source #

A wrapper to wrap annotations and corresponding singleton. Apart from packing notes along with the corresponding Singleton, this wrapper type, when included with Instr also helps to derive the Show instance for Instr as `Sing a` does not have a Show instance on its own.

Constructors

PackedNotes :: SingI a => Notes a -> PackedNotes (a ': s) 

Instances

Instances details
Show (PackedNotes a) Source # 
Instance details

Defined in Michelson.Typed.Instr

NFData (PackedNotes a) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

rnf :: PackedNotes a -> () #

Buildable (PackedNotes a) Source # 
Instance details

Defined in Michelson.Typed.Instr

Methods

build :: PackedNotes a -> Builder #

RenderDoc (PackedNotes a) Source # 
Instance details

Defined in Michelson.Typed.Instr

type ConstraintDIPN n inp out s s' = ConstraintDIPN' T n inp out s s' Source #

type ConstraintDIPN' kind (n :: Peano) (inp :: [kind]) (out :: [kind]) (s :: [kind]) (s' :: [kind]) = (SingI n, KnownPeano n, RequireLongerOrSameLength inp n, (Take n inp ++ s) ~ inp, (Take n inp ++ s') ~ out) Source #

Constraint that is used in DIPN, we want to share it with typechecking code and eDSL code.

type ConstraintDIG n inp out a = ConstraintDIG' T n inp out a Source #

type ConstraintDIG' kind (n :: Peano) (inp :: [kind]) (out :: [kind]) (a :: kind) = (SingI n, KnownPeano n, RequireLongerThan inp n, inp ~ (Take n inp ++ (a ': Drop ('S n) inp)), out ~ (a ': (Take n inp ++ Drop ('S n) inp))) Source #

type ConstraintDUG n inp out a = ConstraintDUG' T n inp out a Source #

type ConstraintDUG' kind (n :: Peano) (inp :: [kind]) (out :: [kind]) (a :: kind) = (SingI n, KnownPeano n, RequireLongerThan out n, inp ~ (a ': Drop ('S 'Z) inp), out ~ (Take n (Drop ('S 'Z) inp) ++ (a ': Drop ('S n) inp))) Source #