noether-0.0.1: Math in Haskell.

Safe HaskellNone
LanguageHaskell2010

Noether.Algebra.Linear.Module

Synopsis

Documentation

class LeftModuleK op p m r a v s Source #

A left module (v, a) over the ring (r, p, m).

Instances

(RingK k3 k4 k5 p m r zr, AbelianGroupK k1 k2 a v zag, ActorLinearK k1 k2 k3 k5 k4 Side L m p r a v zor, ActeeLinearK k1 k2 k3 k4 Side L m r a v zee, CompatibleK k1 k3 k4 k L op m r v zlc) => LeftModuleK LeftModuleE k1 k2 k3 k4 k5 k op p m r a v (LeftModule_Ring_AbelianGroup_Linear_Compatible zr zag zor zee zlc) Source # 

type LeftModuleC op p m r a v = LeftModuleK op p m r a v (LeftModuleS op p m r a v) Source #

type LeftModule op p m r a v = (LeftModuleC op p m r a v, Ring p m r, AbelianGroup a v, LinearActsOn L m p r a v, LeftCompatible op m r v) Source #

class RightModuleK op p m r a v s Source #

A right module (v, a) over the ring (r, p, m).

Instances

(RingK k3 k4 k5 p m r zr, AbelianGroupK k1 k2 a v zag, ActorLinearK k1 k2 k3 k5 k4 Side R m p r a v zor, ActeeLinearK k1 k2 k3 k4 Side R m r a v zee, CompatibleK k1 k3 k4 k R op m r v zrc) => RightModuleK RightModuleE k1 k2 k3 k4 k5 k op p m r a v (RightModule_Ring_AbelianGroup_Linear_Compatible zr zag zor zee zrc) Source # 

type RightModuleC op p m r a v = RightModuleK op p m r a v (RightModuleS op p m r a v) Source #

type RightModule op p m r a v = (RightModuleC op p m r a v, Ring p m r, AbelianGroup a v, LinearActsOn R m p r a v, RightCompatible op m r v) Source #