Safe Haskell | None |
---|---|
Language | Haskell2010 |
- data LeftModuleE
- class LeftModuleK op p m r a v s
- type family LeftModuleS (op :: k0) (p :: k1) (m :: k2) r (a :: k3) v :: LeftModuleE
- type LeftModuleC op p m r a v = LeftModuleK op p m r a v (LeftModuleS op p m r a v)
- type LeftModule op p m r a v = (LeftModuleC op p m r a v, Ring p m r, AbelianGroup a v, LinearActsOn L m p r a v, LeftCompatible op m r v)
- data RightModuleE
- class RightModuleK op p m r a v s
- type family RightModuleS (op :: k0) (p :: k1) (m :: k2) r (a :: k3) v :: RightModuleE
- type RightModuleC op p m r a v = RightModuleK op p m r a v (RightModuleS op p m r a v)
- type RightModule op p m r a v = (RightModuleC op p m r a v, Ring p m r, AbelianGroup a v, LinearActsOn R m p r a v, RightCompatible op m r v)
Documentation
data LeftModuleE Source #
(RingK k3 k4 k5 p m r zr, AbelianGroupK k1 k2 a v zag, ActorLinearK k1 k2 k3 k5 k4 Side L m p r a v zor, ActeeLinearK k1 k2 k3 k4 Side L m r a v zee, CompatibleK k1 k3 k4 k L op m r v zlc) => LeftModuleK LeftModuleE k1 k2 k3 k4 k5 k op p m r a v (LeftModule_Ring_AbelianGroup_Linear_Compatible zr zag zor zee zlc) Source # | |
class LeftModuleK op p m r a v s Source #
A left module (v, a) over the ring (r, p, m).
(RingK k3 k4 k5 p m r zr, AbelianGroupK k1 k2 a v zag, ActorLinearK k1 k2 k3 k5 k4 Side L m p r a v zor, ActeeLinearK k1 k2 k3 k4 Side L m r a v zee, CompatibleK k1 k3 k4 k L op m r v zlc) => LeftModuleK LeftModuleE k1 k2 k3 k4 k5 k op p m r a v (LeftModule_Ring_AbelianGroup_Linear_Compatible zr zag zor zee zlc) Source # | |
type family LeftModuleS (op :: k0) (p :: k1) (m :: k2) r (a :: k3) v :: LeftModuleE Source #
type LeftModuleC op p m r a v = LeftModuleK op p m r a v (LeftModuleS op p m r a v) Source #
type LeftModule op p m r a v = (LeftModuleC op p m r a v, Ring p m r, AbelianGroup a v, LinearActsOn L m p r a v, LeftCompatible op m r v) Source #
data RightModuleE Source #
(RingK k3 k4 k5 p m r zr, AbelianGroupK k1 k2 a v zag, ActorLinearK k1 k2 k3 k5 k4 Side R m p r a v zor, ActeeLinearK k1 k2 k3 k4 Side R m r a v zee, CompatibleK k1 k3 k4 k R op m r v zrc) => RightModuleK RightModuleE k1 k2 k3 k4 k5 k op p m r a v (RightModule_Ring_AbelianGroup_Linear_Compatible zr zag zor zee zrc) Source # | |
class RightModuleK op p m r a v s Source #
A right module (v, a) over the ring (r, p, m).
(RingK k3 k4 k5 p m r zr, AbelianGroupK k1 k2 a v zag, ActorLinearK k1 k2 k3 k5 k4 Side R m p r a v zor, ActeeLinearK k1 k2 k3 k4 Side R m r a v zee, CompatibleK k1 k3 k4 k R op m r v zrc) => RightModuleK RightModuleE k1 k2 k3 k4 k5 k op p m r a v (RightModule_Ring_AbelianGroup_Linear_Compatible zr zag zor zee zrc) Source # | |
type family RightModuleS (op :: k0) (p :: k1) (m :: k2) r (a :: k3) v :: RightModuleE Source #
type RightModuleC op p m r a v = RightModuleK op p m r a v (RightModuleS op p m r a v) Source #
type RightModule op p m r a v = (RightModuleC op p m r a v, Ring p m r, AbelianGroup a v, LinearActsOn R m p r a v, RightCompatible op m r v) Source #