|
Algebra.NormedSpace.Euclidean | Portability | requires multi-parameter type classes | Stability | provisional | Maintainer | numericprelude@henning-thielemann.de |
|
|
|
|
|
Description |
Abstraction of normed vector spaces
|
|
Synopsis |
|
|
|
Documentation |
|
class (C a, C a v) => Sqr a v where | Source |
|
A vector space equipped with an Euclidean or a Hilbert norm.
Minimal definition:
normSqr
| | Methods | | Square of the Euclidean norm of a vector.
This is sometimes easier to implement.
|
| | Instances | Sqr Double Double | Sqr Float Float | Sqr Int Int | Sqr Integer Integer | Sqr a v => Sqr a [v] | Sqr a b => Sqr a (T b) | Sqr a b => Sqr a (T b) | (Sqr a v0, Sqr a v1) => Sqr a (v0, v1) | (Ord i, Eq a, Eq v, Sqr a v) => Sqr a (Map i v) | (Sqr a v0, Sqr a v1, Sqr a v2) => Sqr a (v0, v1, v2) | (C a, C a) => Sqr (T a) (T a) |
|
|
|
|
| Methods | | Euclidean norm of a vector.
|
| | Instances | C Double Double | C Float Float | C Int Int | C Integer Integer | (C a, Sqr a v) => C a [v] | (C a, Sqr a b) => C a (T b) | (C a, Sqr a b) => C a (T b) | (C a, Sqr a v0, Sqr a v1) => C a (v0, v1) | (Ord i, Eq a, Eq v, C a, Sqr a v) => C a (Map i v) | (C a, Sqr a v0, Sqr a v1, Sqr a v2) => C a (v0, v1, v2) |
|
|
|
|
|
Instances for atomic types
|
|
Instances for composed types
|
|
Produced by Haddock version 2.6.0 |