Portability | requires multi-parameter type classes |
---|---|
Stability | provisional |
Maintainer | mik@math.uni-jena.de |
Permutation of Integers represented by cycles.
- type Cycle i = [i]
- type T i = [Cycle i]
- fromFunction :: Ix i => (i, i) -> (i -> i) -> T i
- cycleRightAction :: Eq i => i -> Cycle i -> i
- cycleLeftAction :: Eq i => Cycle i -> i -> i
- cycleAction :: Eq i => [i] -> i -> i
- cycleOrbit :: Ord i => Cycle i -> i -> [i]
- (*>) :: Eq i => T i -> i -> i
- cyclesOrbit :: Ord i => T i -> i -> [i]
- orbit :: Ord i => (i -> i) -> i -> [i]
- takeUntilRepetition :: Ord a => [a] -> [a]
- takeUntilRepetitionSlow :: Eq a => [a] -> [a]
- choose :: Set a -> Maybe a
- keepEssentials :: T i -> T i
- isEssential :: Cycle i -> Bool
- inverse :: T i -> T i
Documentation
fromFunction :: Ix i => (i, i) -> (i -> i) -> T iSource
cycleRightAction :: Eq i => i -> Cycle i -> iSource
cycleLeftAction :: Eq i => Cycle i -> i -> iSource
cycleAction :: Eq i => [i] -> i -> iSource
cycleOrbit :: Ord i => Cycle i -> i -> [i]Source
(*>) :: Eq i => T i -> i -> iSource
Right (left?) group action on the Integers. Close to, but not the same as the module action in Algebra.Module.
cyclesOrbit :: Ord i => T i -> i -> [i]Source
takeUntilRepetition :: Ord a => [a] -> [a]Source
candidates for Utility ?
takeUntilRepetitionSlow :: Eq a => [a] -> [a]Source
keepEssentials :: T i -> T iSource
isEssential :: Cycle i -> BoolSource