| Safe Haskell | None |
|---|
Algebra.NormedSpace.Euclidean
Description
Abstraction of normed vector spaces
Documentation
class (C a, C a v) => Sqr a v whereSource
Methods
Square of the Euclidean norm of a vector. This is sometimes easier to implement.
Instances
| Sqr Double Double | |
| Sqr Float Float | |
| Sqr Int Int | |
| Sqr Integer Integer | |
| Sqr a v => Sqr a [v] | |
| Sqr a b => Sqr a (T b) | |
| Sqr a b => Sqr a (T b) | |
| (Sqr a v0, Sqr a v1) => Sqr a (v0, v1) | |
| (Ord i, Eq a, Eq v, Sqr a v) => Sqr a (Map i v) | |
| (Sqr a v0, Sqr a v1, Sqr a v2) => Sqr a (v0, v1, v2) | |
| (C a, C a) => Sqr (T a) (T a) | |
| Sqr a v => Sqr (T a) (T v) |
normSqrFoldable :: (Sqr a v, Foldable f) => f v -> aSource
normSqrFoldable1 :: (Sqr a v, Foldable f, Functor f) => f v -> aSource
class Sqr a v => C a v whereSource
A vector space equipped with an Euclidean or a Hilbert norm.
Minimal definition:
norm
Instances
| C Double Double | |
| C Float Float | |
| C Int Int | |
| C Integer Integer | |
| (C a, Sqr a v) => C a [v] | |
| (C a, Sqr a b) => C a (T b) | |
| (C a, Sqr a b) => C a (T b) | |
| (C a, Sqr a v0, Sqr a v1) => C a (v0, v1) | |
| (Ord i, Eq a, Eq v, C a, Sqr a v) => C a (Map i v) | |
| (C a, Sqr a v0, Sqr a v1, Sqr a v2) => C a (v0, v1, v2) | |
| C a v => C (T a) (T v) |