Safe Haskell | None |
---|---|

Language | Haskell98 |

Abstraction of normed vector spaces

# Documentation

class (C a, C a v) => C a v where Source

The super class is only needed to state the laws
```
v == zero == norm v == zero
norm (scale x v) == abs x * norm v
norm (u+v) <= norm u + norm v
```

C Double Double | |

C Float Float | |

C Int Int | |

C Integer Integer | |

(C a v, RealFloat v) => C a (Complex v) | |

(C a, C a v) => C a [v] | |

(C a, C a v) => C a (T v) | |

(C a, C a v0, C a v1) => C a (v0, v1) | |

(Ord i, Eq a, Eq v, C a v) => C a (Map i v) | |

(C a, C a v0, C a v1, C a v2) => C a (v0, v1, v2) | |

(C a, C a) => C (T a) (T a) | |

C a v => C (T a) (T v) |

normFoldable :: (C a v, Foldable f) => f v -> a Source