| Safe Haskell | None |
|---|---|
| Language | Haskell98 |
Algebra.NormedSpace.Sum
Description
Abstraction of normed vector spaces
Documentation
class (C a, C a v) => C a v where Source #
The super class is only needed to state the laws
v == zero == norm v == zero
norm (scale x v) == abs x * norm v
norm (u+v) <= norm u + norm v
Instances
| C Double Double Source # | |
| C Float Float Source # | |
| C Int Int Source # | |
| C Integer Integer Source # | |
| (C a v, RealFloat v) => C a (Complex v) Source # | |
Defined in Algebra.NormedSpace.Sum | |
| (C a, C a v) => C a [v] Source # | |
Defined in Algebra.NormedSpace.Sum | |
| (C a, C a v) => C a (T v) Source # | |
Defined in Number.Complex | |
| (C a, C a v0, C a v1) => C a (v0, v1) Source # | |
Defined in Algebra.NormedSpace.Sum | |
| (Ord i, Eq a, Eq v, C a v) => C a (Map i v) Source # | |
Defined in MathObj.DiscreteMap | |
| (C a, C a v0, C a v1, C a v2) => C a (v0, v1, v2) Source # | |
Defined in Algebra.NormedSpace.Sum | |
| (C a, C a) => C (T a) (T a) Source # | |
| C a v => C (T a) (T v) Source # | |
normFoldable :: (C a v, Foldable f) => f v -> a Source #