Copyright | (c) Erich Gut |
---|---|
License | BSD3 |
Maintainer | zerich.gut@gmail.com |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
Synopsis
- abhKernels :: Kernels N1 AbHom
- abhCokernels :: Cokernels N1 AbHom
- isoSmithNormal :: AbGroup -> Inv AbHom
- abhSliceFreeAdjunction :: Attestable k => Free k AbHom -> Adjunction (SliceCokernelKernel (Free k) AbHom) (SliceFactor From (Free k) AbHom) (SliceFactor To (Free k) AbHom)
Kernels
Cokernels
Smith Normal
isoSmithNormal :: AbGroup -> Inv AbHom Source #
isomorphism to its smith normal group.
Properties Let g
be in AbGroup
, then holds:
.start
(isoSmithNormal
g)==
g
is smith normal (see definitionend
(isoSmithNormal
g)AbGroup
).
Adjunction
abhSliceFreeAdjunction :: Attestable k => Free k AbHom -> Adjunction (SliceCokernelKernel (Free k) AbHom) (SliceFactor From (Free k) AbHom) (SliceFactor To (Free k) AbHom) Source #
the cokernel-kernel adjunction for a given
. Free
k
Orphan instances
Attestable k => SliceCokernelTo (Free k) AbHom Source # | |
Attestable k => SliceKernelFrom (Free k) AbHom Source # | |