| Copyright | (c) Erich Gut |
|---|---|
| License | BSD3 |
| Maintainer | zerich.gut@gmail.com |
| Safe Haskell | Safe-Inferred |
| Language | Haskell2010 |
OAlg.Structure.Exponential
Contents
Description
Multiplicative structures with a power function (.^)
Synopsis
- class (Multiplicative f, Number (Exponent f)) => Exponential f where
- opower :: (Entity p, Number r) => Orientation p -> r -> Orientation p
- class Multiplicative f => Real f where
Exponential
class (Multiplicative f, Number (Exponent f)) => Exponential f where Source #
Multiplicative structures with a partially defined power function with numbers as exponents.
Properties
For all
fandaholds:- For all
fholds:f.^1==f - For all
fholds:f.^(-1)==invertf - For all
fandawithandstartf==endfanot in[-1,1]holds:andstart(f^a)==startf.end(f^a)==endf - For all
f,aandbwithholds:startf==endff.^(a*b)==(f^a)^b - For all
fwithholds:startf==endff.^0 ==one(endf) - For all
f,aandbwithholds:startf==endff.^(a+b)==f^a*f^b - For all
aandpholds:(.onep)^a==onep - For all
f,gandawith,startf==endfstartg==endgandstartf==startgfholds:*g==g*f(f.*g)^a==f^a*g^a
Note
Instances
| Galoisian x => Exponential (GL2 x) Source # | |
| Oriented x => Exponential (GLT x) Source # | |
| Oriented x => Exponential (ColTrafo x) Source # | |
| Oriented a => Exponential (RowTrafo a) Source # | |
| Entity x => Exponential (ProductSymbol x) Source # | |
Defined in OAlg.Entity.Product.ProductSymbol Associated Types type Exponent (ProductSymbol x) Source # Methods (^) :: ProductSymbol x -> Exponent (ProductSymbol x) -> ProductSymbol x Source # | |
| (Entity i, Ord i) => Exponential (Permutation i) Source # | |
Defined in OAlg.Entity.Sequence.Permutation Associated Types type Exponent (Permutation i) Source # Methods (^) :: Permutation i -> Exponent (Permutation i) -> Permutation i Source # | |
| Multiplicative c => Exponential (Inv c) Source # | |
| (Oriented x, Typeable p, p ~ Point x) => Exponential (Dim x p) Source # | |
| (Oriented a, Integral r) => Exponential (Product r a) Source # | |
opower :: (Entity p, Number r) => Orientation p -> r -> Orientation p Source #
the power of an orientation by an number.
Note opower fulfill the properties of Exponential for any number structure.
Real
class Multiplicative f => Real f where Source #
reals.
Instances
| Entity p => Real (Orientation p) Source # | |
Defined in OAlg.Structure.Exponential Methods power :: Number r => Orientation p -> r -> Orientation p Source # | |