Safe Haskell | None |
---|---|

Language | Haskell2010 |

## Synopsis

- type ReversedLens s t a b = Optic A_ReversedLens NoIx s t a b
- type ReversedLens' t b = Optic' A_ReversedLens NoIx t b
- data A_ReversedLens

# Formation

type ReversedLens s t a b = Optic A_ReversedLens NoIx s t a b Source #

Type synonym for a type-modifying reversed lens.

type ReversedLens' t b = Optic' A_ReversedLens NoIx t b Source #

Type synonym for a type-preserving reversed lens.

# Introduction

There is no canonical introduction form for `ReversedLens`

, but you can use
`re`

to construct one from a `Lens`

:

(\ f g ->`re`

(`lens`

f g)) :: (b -> t) -> (b -> s -> a) ->`ReversedLens`

s t a b

# Elimination

A `ReversedLens`

is a `Review`

, so you can specialise types to obtain:

`review`

::`ReversedLens'`

s a -> a -> s

There is no corresponding optic kind for a backwards
`Setter`

, but a reversed `set`

is definable
using `re`

:

`set`

.`re`

::`ReversedLens`

s t a b -> s -> b -> a

# Computation

# Subtyping

data A_ReversedLens Source #

Tag for a reversed lens.

## Instances

ReversibleOptic A_ReversedLens Source # | |

Defined in Optics.Re type ReversedOptic A_ReversedLens = (r :: Type) Source # re :: AcceptsEmptyIndices "re" is => Optic A_ReversedLens is s t a b -> Optic (ReversedOptic A_ReversedLens) is b a t s Source # | |

Is A_ReversedLens A_Review Source # | |

Defined in Optics.Internal.Optic.Subtyping implies :: proxy A_ReversedLens A_Review p -> (Constraints A_ReversedLens p -> r) -> Constraints A_Review p -> r Source # | |

Is An_Iso A_ReversedLens Source # | |

Defined in Optics.Internal.Optic.Subtyping implies :: proxy An_Iso A_ReversedLens p -> (Constraints An_Iso p -> r) -> Constraints A_ReversedLens p -> r Source # | |

type ReversedOptic A_ReversedLens Source # | |

Defined in Optics.Re |