pairing-1.1.0: Bilinear pairings

Safe HaskellNone
LanguageHaskell2010

Data.Pairing.BN254C

Contents

Synopsis

Documentation

BN254C curve

data BN254C #

BN254C curve.

Instances
Pairing BN254C Source # 
Instance details

Defined in Data.Pairing.BN254C

Associated Types

type G1 BN254C = (g :: Type) Source #

type G2 BN254C = (g :: Type) Source #

type GT BN254C = (g :: Type) Source #

WACurve BN254C Fq2 Fr 
Instance details

Defined in Data.Curve.Weierstrass.BN254CT

Methods

gA_ :: WAPoint BN254C Fq2 Fr #

WACurve BN254C Fq Fr 
Instance details

Defined in Data.Curve.Weierstrass.BN254C

Methods

gA_ :: WAPoint BN254C Fq Fr #

WJCurve BN254C Fq2 Fr 
Instance details

Defined in Data.Curve.Weierstrass.BN254CT

Methods

gJ_ :: WJPoint BN254C Fq2 Fr #

WJCurve BN254C Fq Fr 
Instance details

Defined in Data.Curve.Weierstrass.BN254C

Methods

gJ_ :: WJPoint BN254C Fq Fr #

WPCurve BN254C Fq2 Fr 
Instance details

Defined in Data.Curve.Weierstrass.BN254CT

Methods

gP_ :: WPPoint BN254C Fq2 Fr #

WPCurve BN254C Fq Fr 
Instance details

Defined in Data.Curve.Weierstrass.BN254C

Methods

gP_ :: WPPoint BN254C Fq Fr #

Curve Weierstrass c BN254C Fq2 Fr => WCurve c BN254C Fq2 Fr 
Instance details

Defined in Data.Curve.Weierstrass.BN254CT

Curve Weierstrass c BN254C Fq Fr => WCurve c BN254C Fq Fr 
Instance details

Defined in Data.Curve.Weierstrass.BN254C

type G1 BN254C Source # 
Instance details

Defined in Data.Pairing.BN254C

type G1 BN254C = G1'
type G2 BN254C Source # 
Instance details

Defined in Data.Pairing.BN254C

type G2 BN254C = G2'
type GT BN254C Source # 
Instance details

Defined in Data.Pairing.BN254C

type GT BN254C = GT'

parameterBin :: [Int8] Source #

BN254C curve parameter s = 6t + 2 in signed binary.

parameterHex :: Integer Source #

BN254C curve parameter t in hexadecimal.

Fields

type Fq = Prime Q #

Field of points of BN254C curve.

type Fq2 = Extension U Fq #

Field of points of BN254C curve over Fq2.

type Fq6 = Extension V Fq2 Source #

Field of points of BN254C curve over Fq6.

type Fq12 = Extension W Fq6 Source #

Field of points of BN254C curve over Fq12.

type Fr = Prime R #

Field of coefficients of BN254C curve.

Groups

type G1' = PA Source #

BN254C curve left group G1 = E(Fq).

type G2' = PA Source #

BN254C curve right group G2 = E'(Fq2).

type GT' = RootsOfUnity R Fq12 Source #

Fq12 multiplicative target group GT.

Roots of unity

getRootOfUnity :: Int -> Fr Source #

Precompute primitive roots of unity for binary powers that divide r - 1.

Orphan instances

Pairing BN254C Source # 
Instance details

Associated Types

type G1 BN254C = (g :: Type) Source #

type G2 BN254C = (g :: Type) Source #

type GT BN254C = (g :: Type) Source #