pandora-0.1.7: A box of patterns and paradigms
Pandora.Paradigm.Basis.Proxy
data Proxy a Source #
Constructors
Defined in Pandora.Paradigm.Basis.Proxy
Methods
(>$<) :: (a -> b) -> Proxy b -> Proxy a Source #
contramap :: (a -> b) -> Proxy b -> Proxy a Source #
(>$) :: b -> Proxy b -> Proxy a Source #
($<) :: Proxy b -> b -> Proxy a Source #
full :: Proxy () -> Proxy a Source #
(>&<) :: Proxy b -> (a -> b) -> Proxy a Source #
(>$$<) :: Contravariant u => (a -> b) -> ((Proxy :.: u) >< a) -> (Proxy :.: u) >< b Source #
(>$$$<) :: (Contravariant u, Contravariant v) => (a -> b) -> ((Proxy :.: (u :.: v)) >< b) -> (Proxy :.: (u :.: v)) >< a Source #
(>$$$$<) :: (Contravariant u, Contravariant v, Contravariant w) => (a -> b) -> ((Proxy :.: (u :.: (v :.: w))) >< a) -> (Proxy :.: (u :.: (v :.: w))) >< b Source #
(>&&<) :: Contravariant u => ((Proxy :.: u) >< a) -> (a -> b) -> (Proxy :.: u) >< b Source #
(>&&&<) :: (Contravariant u, Contravariant v) => ((Proxy :.: (u :.: v)) >< b) -> (a -> b) -> (Proxy :.: (u :.: v)) >< a Source #
(>&&&&<) :: (Contravariant u, Contravariant v, Contravariant w) => ((Proxy :.: (u :.: (v :.: w))) >< a) -> (a -> b) -> (Proxy :.: (u :.: (v :.: w))) >< b Source #
(<$>) :: (a -> b) -> Proxy a -> Proxy b Source #
comap :: (a -> b) -> Proxy a -> Proxy b Source #
(<$) :: a -> Proxy b -> Proxy a Source #
($>) :: Proxy a -> b -> Proxy b Source #
void :: Proxy a -> Proxy () Source #
loeb :: Proxy (Proxy a -> a) -> Proxy a Source #
(<&>) :: Proxy a -> (a -> b) -> Proxy b Source #
(<$$>) :: Covariant u => (a -> b) -> ((Proxy :.: u) >< a) -> (Proxy :.: u) >< b Source #
(<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Proxy :.: (u :.: v)) >< a) -> (Proxy :.: (u :.: v)) >< b Source #
(<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Proxy :.: (u :.: (v :.: w))) >< a) -> (Proxy :.: (u :.: (v :.: w))) >< b Source #
(<&&>) :: Covariant u => ((Proxy :.: u) >< a) -> (a -> b) -> (Proxy :.: u) >< b Source #
(<&&&>) :: (Covariant u, Covariant v) => ((Proxy :.: (u :.: v)) >< a) -> (a -> b) -> (Proxy :.: (u :.: v)) >< b Source #
(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Proxy :.: (u :.: (v :.: w))) >< a) -> (a -> b) -> (Proxy :.: (u :.: (v :.: w))) >< b Source #
(>>=) :: Proxy a -> (a -> Proxy b) -> Proxy b Source #
(=<<) :: (a -> Proxy b) -> Proxy a -> Proxy b Source #
bind :: (a -> Proxy b) -> Proxy a -> Proxy b Source #
join :: (Proxy :.: Proxy) a -> Proxy a Source #
(>=>) :: (a -> Proxy b) -> (b -> Proxy c) -> a -> Proxy c Source #
(<=<) :: (b -> Proxy c) -> (a -> Proxy b) -> a -> Proxy c Source #
(<*>) :: Proxy (a -> b) -> Proxy a -> Proxy b Source #
apply :: Proxy (a -> b) -> Proxy a -> Proxy b Source #
(*>) :: Proxy a -> Proxy b -> Proxy b Source #
(<*) :: Proxy a -> Proxy b -> Proxy a Source #
forever :: Proxy a -> Proxy b Source #
(<**>) :: Applicative u => (Proxy :.: u) (a -> b) -> (Proxy :.: u) a -> (Proxy :.: u) b Source #
(<***>) :: (Applicative u, Applicative v) => (Proxy :.: (u :.: v)) (a -> b) -> (Proxy :.: (u :.: v)) a -> (Proxy :.: (u :.: v)) b Source #
(<****>) :: (Applicative u, Applicative v, Applicative w) => (Proxy :.: (u :.: (v :.: w))) (a -> b) -> (Proxy :.: (u :.: (v :.: w))) a -> (Proxy :.: (u :.: (v :.: w))) b Source #
(<+>) :: Proxy a -> Proxy a -> Proxy a Source #
alter :: Proxy a -> Proxy a -> Proxy a Source #
(>>-) :: Covariant t => t a -> (a -> Proxy b) -> (Proxy :.: t) b Source #
collect :: Covariant t => (a -> Proxy b) -> t a -> (Proxy :.: t) b Source #
distribute :: Covariant t => (t :.: Proxy) a -> (Proxy :.: t) a Source #
(>>>-) :: (Covariant t, Covariant v) => (t :.: v) a -> (a -> Proxy b) -> (Proxy :.: (t :.: v)) b Source #
(>>>>-) :: (Covariant t, Covariant v, Covariant w) => (t :.: (v :.: w)) a -> (a -> Proxy b) -> (Proxy :.: (t :.: (v :.: w))) b Source #
(>>>>>-) :: (Covariant t, Covariant v, Covariant w, Covariant j) => (t :.: (v :.: (w :.: j))) a -> (a -> Proxy b) -> (Proxy :.: (t :.: (v :.: (w :.: j)))) b Source #
(=>>) :: Proxy a -> (Proxy a -> b) -> Proxy b Source #
(<<=) :: (Proxy a -> b) -> Proxy a -> Proxy b Source #
extend :: (Proxy a -> b) -> Proxy a -> Proxy b Source #
duplicate :: Proxy a -> (Proxy :.: Proxy) a Source #
(=<=) :: (Proxy b -> c) -> (Proxy a -> b) -> Proxy a -> c Source #
(=>=) :: (Proxy a -> b) -> (Proxy b -> c) -> Proxy a -> c Source #
point :: a -> Proxy a Source #