module Pandora.Paradigm.Basis.Product (Product (..), type (:*:), Has, Injective
, delta, swap, attached, curry, uncurry) where
import Pandora.Core.Morphism (($))
import Pandora.Pattern.Functor.Covariant (Covariant ((<$>)))
import Pandora.Pattern.Functor.Extractable (Extractable (extract))
import Pandora.Pattern.Functor.Traversable (Traversable ((->>)))
import Pandora.Pattern.Functor.Extendable (Extendable ((=>>)))
import Pandora.Pattern.Functor.Comonad (Comonad)
import Pandora.Pattern.Functor.Adjoint (Adjoint (phi, psi))
import Pandora.Pattern.Object.Setoid (Setoid ((==)), (&&))
import Pandora.Pattern.Object.Semigroup (Semigroup ((+)))
import Pandora.Pattern.Object.Monoid (Monoid (zero))
import Pandora.Pattern.Object.Ringoid (Ringoid ((*)))
import Pandora.Pattern.Object.Semilattice (Infimum ((/\)), Supremum ((\/)))
import Pandora.Pattern.Object.Lattice (Lattice)
import Pandora.Pattern.Object.Group (Group (inverse))
infixr 1 :*:
data Product a b = a :*: b
type (:*:) = Product
instance Covariant (Product a) where
f <$> (x :*: y) = x :*: f y
instance Extractable (Product a) where
extract (_ :*: y) = y
instance Traversable (Product a) where
(x :*: y) ->> f = (:*:) x <$> f y
instance Extendable (Product a) where
(x :*: y) =>> f = (:*:) x $ f (x :*: y)
instance Comonad (Product a) where
instance Adjoint (Product a) ((->) a) where
phi f x y = f $ y :*: x
psi f (y :*: x) = f x y
instance (Setoid a, Setoid b) => Setoid (Product a b) where
(x :*: y) == (x' :*: y') = x == x' && y == y'
instance (Semigroup a, Semigroup b) => Semigroup (Product a b) where
(x :*: y) + (x' :*: y') = x + x' :*: y + y'
instance (Monoid a, Monoid b) => Monoid (Product a b) where
zero = zero :*: zero
instance (Ringoid a, Ringoid b) => Ringoid (Product a b) where
(x :*: y) * (x' :*: y') = x * x' :*: y * y'
instance (Infimum a, Infimum b) => Infimum (Product a b) where
(x :*: y) /\ (x' :*: y') = x /\ x' :*: y /\ y'
instance (Supremum a, Supremum b) => Supremum (Product a b) where
(x :*: y) \/ (x' :*: y') = x \/ x' :*: y \/ y'
instance (Lattice a, Lattice b) => Lattice (Product a b) where
instance (Group a, Group b) => Group (Product a b) where
inverse (x :*: y) = inverse x :*: inverse y
delta :: a -> a :*: a
delta x = x :*: x
swap :: a :*: b -> b :*: a
swap (x :*: y) = y :*: x
attached :: a :*: b -> a
attached (x :*: _) = x
curry :: (a :*: b -> c) -> a -> b -> c
curry f x y = f $ x :*: y
uncurry :: (a -> b -> c) -> (a :*: b -> c)
uncurry f (x :*: y) = f x y
type family Has x xs where
Has x (x :*: xs) = ()
Has x (y :*: xs) = Has x xs
Has x x = ()
type family Injective xs ys where
Injective (x :*: xs) ys = (Has x ys, Injective xs ys)
Injective x (x :*: ys) = ()
Injective x (y :*: ys) = Has x ys
Injective x x = ()