pandora-0.1.9: A box of patterns and paradigms

Safe HaskellSafe
LanguageHaskell2010

Pandora.Pattern.Junction.Schemes.UT

Documentation

newtype UT ct cu t u a Source #

Constructors

UT ((u :.: t) >< a) 
Instances
Pointable t => Liftable (UT Co Co t) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Methods

lift :: Covariant u => u ~> UT Co Co t u Source #

Extractable t => Lowerable (UT Co Co t) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Methods

lower :: Covariant u => UT Co Co t u ~> u Source #

Covariant u => Covariant (UT Maybe () Maybe u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Maybe

Methods

(<$>) :: (a -> b) -> UT Maybe () Maybe u a -> UT Maybe () Maybe u b Source #

comap :: (a -> b) -> UT Maybe () Maybe u a -> UT Maybe () Maybe u b Source #

(<$) :: a -> UT Maybe () Maybe u b -> UT Maybe () Maybe u a Source #

($>) :: UT Maybe () Maybe u a -> b -> UT Maybe () Maybe u b Source #

void :: UT Maybe () Maybe u a -> UT Maybe () Maybe u () Source #

loeb :: UT Maybe () Maybe u (UT Maybe () Maybe u a -> a) -> UT Maybe () Maybe u a Source #

(<&>) :: UT Maybe () Maybe u a -> (a -> b) -> UT Maybe () Maybe u b Source #

(<$$>) :: Covariant u0 => (a -> b) -> ((UT Maybe () Maybe u :.: u0) >< a) -> (UT Maybe () Maybe u :.: u0) >< b Source #

(<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((UT Maybe () Maybe u :.: (u0 :.: v)) >< a) -> (UT Maybe () Maybe u :.: (u0 :.: v)) >< b Source #

(<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((UT Maybe () Maybe u :.: (u0 :.: (v :.: w))) >< a) -> (UT Maybe () Maybe u :.: (u0 :.: (v :.: w))) >< b Source #

(<&&>) :: Covariant u0 => ((UT Maybe () Maybe u :.: u0) >< a) -> (a -> b) -> (UT Maybe () Maybe u :.: u0) >< b Source #

(<&&&>) :: (Covariant u0, Covariant v) => ((UT Maybe () Maybe u :.: (u0 :.: v)) >< a) -> (a -> b) -> (UT Maybe () Maybe u :.: (u0 :.: v)) >< b Source #

(<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((UT Maybe () Maybe u :.: (u0 :.: (v :.: w))) >< a) -> (a -> b) -> (UT Maybe () Maybe u :.: (u0 :.: (v :.: w))) >< b Source #

Covariant u => Covariant (UT (Conclusion e) () (Conclusion e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Conclusion

Methods

(<$>) :: (a -> b) -> UT (Conclusion e) () (Conclusion e) u a -> UT (Conclusion e) () (Conclusion e) u b Source #

comap :: (a -> b) -> UT (Conclusion e) () (Conclusion e) u a -> UT (Conclusion e) () (Conclusion e) u b Source #

(<$) :: a -> UT (Conclusion e) () (Conclusion e) u b -> UT (Conclusion e) () (Conclusion e) u a Source #

($>) :: UT (Conclusion e) () (Conclusion e) u a -> b -> UT (Conclusion e) () (Conclusion e) u b Source #

void :: UT (Conclusion e) () (Conclusion e) u a -> UT (Conclusion e) () (Conclusion e) u () Source #

loeb :: UT (Conclusion e) () (Conclusion e) u (UT (Conclusion e) () (Conclusion e) u a -> a) -> UT (Conclusion e) () (Conclusion e) u a Source #

(<&>) :: UT (Conclusion e) () (Conclusion e) u a -> (a -> b) -> UT (Conclusion e) () (Conclusion e) u b Source #

(<$$>) :: Covariant u0 => (a -> b) -> ((UT (Conclusion e) () (Conclusion e) u :.: u0) >< a) -> (UT (Conclusion e) () (Conclusion e) u :.: u0) >< b Source #

(<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((UT (Conclusion e) () (Conclusion e) u :.: (u0 :.: v)) >< a) -> (UT (Conclusion e) () (Conclusion e) u :.: (u0 :.: v)) >< b Source #

(<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((UT (Conclusion e) () (Conclusion e) u :.: (u0 :.: (v :.: w))) >< a) -> (UT (Conclusion e) () (Conclusion e) u :.: (u0 :.: (v :.: w))) >< b Source #

(<&&>) :: Covariant u0 => ((UT (Conclusion e) () (Conclusion e) u :.: u0) >< a) -> (a -> b) -> (UT (Conclusion e) () (Conclusion e) u :.: u0) >< b Source #

(<&&&>) :: (Covariant u0, Covariant v) => ((UT (Conclusion e) () (Conclusion e) u :.: (u0 :.: v)) >< a) -> (a -> b) -> (UT (Conclusion e) () (Conclusion e) u :.: (u0 :.: v)) >< b Source #

(<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((UT (Conclusion e) () (Conclusion e) u :.: (u0 :.: (v :.: w))) >< a) -> (a -> b) -> (UT (Conclusion e) () (Conclusion e) u :.: (u0 :.: (v :.: w))) >< b Source #

(Covariant t, Covariant u) => Covariant (UT Co Co t u) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Methods

(<$>) :: (a -> b) -> UT Co Co t u a -> UT Co Co t u b Source #

comap :: (a -> b) -> UT Co Co t u a -> UT Co Co t u b Source #

(<$) :: a -> UT Co Co t u b -> UT Co Co t u a Source #

($>) :: UT Co Co t u a -> b -> UT Co Co t u b Source #

void :: UT Co Co t u a -> UT Co Co t u () Source #

loeb :: UT Co Co t u (UT Co Co t u a -> a) -> UT Co Co t u a Source #

(<&>) :: UT Co Co t u a -> (a -> b) -> UT Co Co t u b Source #

(<$$>) :: Covariant u0 => (a -> b) -> ((UT Co Co t u :.: u0) >< a) -> (UT Co Co t u :.: u0) >< b Source #

(<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((UT Co Co t u :.: (u0 :.: v)) >< a) -> (UT Co Co t u :.: (u0 :.: v)) >< b Source #

(<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((UT Co Co t u :.: (u0 :.: (v :.: w))) >< a) -> (UT Co Co t u :.: (u0 :.: (v :.: w))) >< b Source #

(<&&>) :: Covariant u0 => ((UT Co Co t u :.: u0) >< a) -> (a -> b) -> (UT Co Co t u :.: u0) >< b Source #

(<&&&>) :: (Covariant u0, Covariant v) => ((UT Co Co t u :.: (u0 :.: v)) >< a) -> (a -> b) -> (UT Co Co t u :.: (u0 :.: v)) >< b Source #

(<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((UT Co Co t u :.: (u0 :.: (v :.: w))) >< a) -> (a -> b) -> (UT Co Co t u :.: (u0 :.: (v :.: w))) >< b Source #

(Pointable u, Bindable u) => Bindable (UT Maybe () Maybe u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Maybe

Methods

(>>=) :: UT Maybe () Maybe u a -> (a -> UT Maybe () Maybe u b) -> UT Maybe () Maybe u b Source #

(=<<) :: (a -> UT Maybe () Maybe u b) -> UT Maybe () Maybe u a -> UT Maybe () Maybe u b Source #

bind :: (a -> UT Maybe () Maybe u b) -> UT Maybe () Maybe u a -> UT Maybe () Maybe u b Source #

join :: ((UT Maybe () Maybe u :.: UT Maybe () Maybe u) >< a) -> UT Maybe () Maybe u a Source #

(>=>) :: (a -> UT Maybe () Maybe u b) -> (b -> UT Maybe () Maybe u c) -> a -> UT Maybe () Maybe u c Source #

(<=<) :: (b -> UT Maybe () Maybe u c) -> (a -> UT Maybe () Maybe u b) -> a -> UT Maybe () Maybe u c Source #

(Pointable u, Bindable u) => Bindable (UT (Conclusion e) () (Conclusion e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Conclusion

Methods

(>>=) :: UT (Conclusion e) () (Conclusion e) u a -> (a -> UT (Conclusion e) () (Conclusion e) u b) -> UT (Conclusion e) () (Conclusion e) u b Source #

(=<<) :: (a -> UT (Conclusion e) () (Conclusion e) u b) -> UT (Conclusion e) () (Conclusion e) u a -> UT (Conclusion e) () (Conclusion e) u b Source #

bind :: (a -> UT (Conclusion e) () (Conclusion e) u b) -> UT (Conclusion e) () (Conclusion e) u a -> UT (Conclusion e) () (Conclusion e) u b Source #

join :: ((UT (Conclusion e) () (Conclusion e) u :.: UT (Conclusion e) () (Conclusion e) u) >< a) -> UT (Conclusion e) () (Conclusion e) u a Source #

(>=>) :: (a -> UT (Conclusion e) () (Conclusion e) u b) -> (b -> UT (Conclusion e) () (Conclusion e) u c) -> a -> UT (Conclusion e) () (Conclusion e) u c Source #

(<=<) :: (b -> UT (Conclusion e) () (Conclusion e) u c) -> (a -> UT (Conclusion e) () (Conclusion e) u b) -> a -> UT (Conclusion e) () (Conclusion e) u c Source #

Applicative u => Applicative (UT Maybe () Maybe u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Maybe

Methods

(<*>) :: UT Maybe () Maybe u (a -> b) -> UT Maybe () Maybe u a -> UT Maybe () Maybe u b Source #

apply :: UT Maybe () Maybe u (a -> b) -> UT Maybe () Maybe u a -> UT Maybe () Maybe u b Source #

(*>) :: UT Maybe () Maybe u a -> UT Maybe () Maybe u b -> UT Maybe () Maybe u b Source #

(<*) :: UT Maybe () Maybe u a -> UT Maybe () Maybe u b -> UT Maybe () Maybe u a Source #

forever :: UT Maybe () Maybe u a -> UT Maybe () Maybe u b Source #

(<**>) :: Applicative u0 => ((UT Maybe () Maybe u :.: u0) >< (a -> b)) -> ((UT Maybe () Maybe u :.: u0) >< a) -> (UT Maybe () Maybe u :.: u0) >< b Source #

(<***>) :: (Applicative u0, Applicative v) => ((UT Maybe () Maybe u :.: (u0 :.: v)) >< (a -> b)) -> ((UT Maybe () Maybe u :.: (u0 :.: v)) >< a) -> (UT Maybe () Maybe u :.: (u0 :.: v)) >< b Source #

(<****>) :: (Applicative u0, Applicative v, Applicative w) => ((UT Maybe () Maybe u :.: (u0 :.: (v :.: w))) >< (a -> b)) -> ((UT Maybe () Maybe u :.: (u0 :.: (v :.: w))) >< a) -> (UT Maybe () Maybe u :.: (u0 :.: (v :.: w))) >< b Source #

Applicative u => Applicative (UT (Conclusion e) () (Conclusion e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Conclusion

Methods

(<*>) :: UT (Conclusion e) () (Conclusion e) u (a -> b) -> UT (Conclusion e) () (Conclusion e) u a -> UT (Conclusion e) () (Conclusion e) u b Source #

apply :: UT (Conclusion e) () (Conclusion e) u (a -> b) -> UT (Conclusion e) () (Conclusion e) u a -> UT (Conclusion e) () (Conclusion e) u b Source #

(*>) :: UT (Conclusion e) () (Conclusion e) u a -> UT (Conclusion e) () (Conclusion e) u b -> UT (Conclusion e) () (Conclusion e) u b Source #

(<*) :: UT (Conclusion e) () (Conclusion e) u a -> UT (Conclusion e) () (Conclusion e) u b -> UT (Conclusion e) () (Conclusion e) u a Source #

forever :: UT (Conclusion e) () (Conclusion e) u a -> UT (Conclusion e) () (Conclusion e) u b Source #

(<**>) :: Applicative u0 => ((UT (Conclusion e) () (Conclusion e) u :.: u0) >< (a -> b)) -> ((UT (Conclusion e) () (Conclusion e) u :.: u0) >< a) -> (UT (Conclusion e) () (Conclusion e) u :.: u0) >< b Source #

(<***>) :: (Applicative u0, Applicative v) => ((UT (Conclusion e) () (Conclusion e) u :.: (u0 :.: v)) >< (a -> b)) -> ((UT (Conclusion e) () (Conclusion e) u :.: (u0 :.: v)) >< a) -> (UT (Conclusion e) () (Conclusion e) u :.: (u0 :.: v)) >< b Source #

(<****>) :: (Applicative u0, Applicative v, Applicative w) => ((UT (Conclusion e) () (Conclusion e) u :.: (u0 :.: (v :.: w))) >< (a -> b)) -> ((UT (Conclusion e) () (Conclusion e) u :.: (u0 :.: (v :.: w))) >< a) -> (UT (Conclusion e) () (Conclusion e) u :.: (u0 :.: (v :.: w))) >< b Source #

(Applicative t, Applicative u) => Applicative (UT Co Co t u) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Methods

(<*>) :: UT Co Co t u (a -> b) -> UT Co Co t u a -> UT Co Co t u b Source #

apply :: UT Co Co t u (a -> b) -> UT Co Co t u a -> UT Co Co t u b Source #

(*>) :: UT Co Co t u a -> UT Co Co t u b -> UT Co Co t u b Source #

(<*) :: UT Co Co t u a -> UT Co Co t u b -> UT Co Co t u a Source #

forever :: UT Co Co t u a -> UT Co Co t u b Source #

(<**>) :: Applicative u0 => ((UT Co Co t u :.: u0) >< (a -> b)) -> ((UT Co Co t u :.: u0) >< a) -> (UT Co Co t u :.: u0) >< b Source #

(<***>) :: (Applicative u0, Applicative v) => ((UT Co Co t u :.: (u0 :.: v)) >< (a -> b)) -> ((UT Co Co t u :.: (u0 :.: v)) >< a) -> (UT Co Co t u :.: (u0 :.: v)) >< b Source #

(<****>) :: (Applicative u0, Applicative v, Applicative w) => ((UT Co Co t u :.: (u0 :.: (v :.: w))) >< (a -> b)) -> ((UT Co Co t u :.: (u0 :.: (v :.: w))) >< a) -> (UT Co Co t u :.: (u0 :.: (v :.: w))) >< b Source #

(Covariant t, Alternative u) => Alternative (UT Co Co t u) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Methods

(<+>) :: UT Co Co t u a -> UT Co Co t u a -> UT Co Co t u a Source #

alter :: UT Co Co t u a -> UT Co Co t u a -> UT Co Co t u a Source #

(Covariant t, Avoidable u) => Avoidable (UT Co Co t u) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Methods

empty :: UT Co Co t u a Source #

(Distributive t, Distributive u) => Distributive (UT Co Co t u) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Methods

(>>-) :: Covariant t0 => t0 a -> (a -> UT Co Co t u b) -> (UT Co Co t u :.: t0) >< b Source #

collect :: Covariant t0 => (a -> UT Co Co t u b) -> t0 a -> (UT Co Co t u :.: t0) >< b Source #

distribute :: Covariant t0 => ((t0 :.: UT Co Co t u) >< a) -> (UT Co Co t u :.: t0) >< a Source #

(>>>-) :: (Covariant t0, Covariant v) => ((t0 :.: v) >< a) -> (a -> UT Co Co t u b) -> (UT Co Co t u :.: (t0 :.: v)) >< b Source #

(>>>>-) :: (Covariant t0, Covariant v, Covariant w) => ((t0 :.: (v :.: w)) >< a) -> (a -> UT Co Co t u b) -> (UT Co Co t u :.: (t0 :.: (v :.: w))) >< b Source #

(>>>>>-) :: (Covariant t0, Covariant v, Covariant w, Covariant j) => ((t0 :.: (v :.: (w :.: j))) >< a) -> (a -> UT Co Co t u b) -> (UT Co Co t u :.: (t0 :.: (v :.: (w :.: j)))) >< b Source #

(Extractable t, Extractable u) => Extractable (UT Co Co t u) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Methods

extract :: UT Co Co t u a -> a Source #

Pointable u => Pointable (UT Maybe () Maybe u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Maybe

Methods

point :: a -> UT Maybe () Maybe u a Source #

Pointable u => Pointable (UT (Conclusion e) () (Conclusion e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Conclusion

Methods

point :: a -> UT (Conclusion e) () (Conclusion e) u a Source #

(Pointable t, Pointable u) => Pointable (UT Co Co t u) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Methods

point :: a -> UT Co Co t u a Source #

Monad u => Monad (UT Maybe () Maybe u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Maybe

Monad u => Monad (UT (Conclusion e) () (Conclusion e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Conclusion

(Traversable t, Traversable u) => Traversable (UT Co Co t u) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Methods

(->>) :: (Pointable u0, Applicative u0) => UT Co Co t u a -> (a -> u0 b) -> (u0 :.: UT Co Co t u) >< b Source #

traverse :: (Pointable u0, Applicative u0) => (a -> u0 b) -> UT Co Co t u a -> (u0 :.: UT Co Co t u) >< b Source #

sequence :: (Pointable u0, Applicative u0) => (UT Co Co t u :.: u0) a -> (u0 :.: UT Co Co t u) >< a Source #

(->>>) :: (Pointable u0, Applicative u0, Traversable v) => ((v :.: UT Co Co t u) >< a) -> (a -> u0 b) -> (u0 :.: (v :.: UT Co Co t u)) >< b Source #

(->>>>) :: (Pointable u0, Applicative u0, Traversable v, Traversable w) => ((w :.: (v :.: UT Co Co t u)) >< a) -> (a -> u0 b) -> (u0 :.: (w :.: (v :.: UT Co Co t u))) >< b Source #

(->>>>>) :: (Pointable u0, Applicative u0, Traversable v, Traversable w, Traversable j) => ((j :.: (w :.: (v :.: UT Co Co t u))) >< a) -> (a -> u0 b) -> (u0 :.: (j :.: (w :.: (v :.: UT Co Co t u)))) >< b Source #

Composition (UT ct cu t u) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Associated Types

type Primary (UT ct cu t u) a :: Type Source #

Methods

unwrap :: UT ct cu t u a -> Primary (UT ct cu t u) a Source #

Semigroup ((u :.: t) >< a) => Semigroup (UT Co Co t u a) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Methods

(+) :: UT Co Co t u a -> UT Co Co t u a -> UT Co Co t u a Source #

Monoid ((u :.: t) >< a) => Monoid (UT Co Co t u a) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Methods

zero :: UT Co Co t u a Source #

Setoid ((u :.: t) >< a) => Setoid (UT Co Co t u a) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Methods

(==) :: UT Co Co t u a -> UT Co Co t u a -> Boolean Source #

(/=) :: UT Co Co t u a -> UT Co Co t u a -> Boolean Source #

Chain ((u :.: t) >< a) => Chain (UT Co Co t u a) Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

Methods

(<=>) :: UT Co Co t u a -> UT Co Co t u a -> Ordering Source #

(<) :: UT Co Co t u a -> UT Co Co t u a -> Boolean Source #

(<=) :: UT Co Co t u a -> UT Co Co t u a -> Boolean Source #

(>) :: UT Co Co t u a -> UT Co Co t u a -> Boolean Source #

(>=) :: UT Co Co t u a -> UT Co Co t u a -> Boolean Source #

type Primary (UT ct cu t u) a Source # 
Instance details

Defined in Pandora.Pattern.Junction.Schemes.UT

type Primary (UT ct cu t u) a = (u :.: t) >< a