Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Pandora.Pattern.Functor.Applicative
Synopsis
- class Covariant t => Applicative t where
- (<*>) :: t (a -> b) -> t a -> t b
- apply :: t (a -> b) -> t a -> t b
- (*>) :: t a -> t b -> t b
- (<*) :: t a -> t b -> t a
- forever :: t a -> t b
- (<**>) :: Applicative u => ((t :. u) := (a -> b)) -> ((t :. u) := a) -> (t :. u) := b
- (<***>) :: (Applicative u, Applicative v) => ((t :. (u :. v)) := (a -> b)) -> ((t :. (u :. v)) := a) -> (t :. (u :. v)) := b
- (<****>) :: (Applicative u, Applicative v, Applicative w) => ((t :. (u :. (v :. w))) := (a -> b)) -> ((t :. (u :. (v :. w))) := a) -> (t :. (u :. (v :. w))) := b
Documentation
class Covariant t => Applicative t where Source #
When providing a new instance, you should ensure it satisfies the three laws: * Interpreted: (.) <$> u <*> v <*> w ≡ u <*> (v <*> w) * Left interchange: x <*> (f <$> y) ≡ (. f) <$> x <*> y * Right interchange: f <$> (x <*> y) ≡ (f .) <$> x <*> y
Minimal complete definition
Methods
(<*>) :: t (a -> b) -> t a -> t b infixl 4 Source #
Infix version of apply
apply :: t (a -> b) -> t a -> t b Source #
Prefix version of <*>
(*>) :: t a -> t b -> t b infixl 4 Source #
Sequence actions, discarding the value of the first argument
(<*) :: t a -> t b -> t a infixl 4 Source #
Sequence actions, discarding the value of the second argument
forever :: t a -> t b Source #
Repeat an action indefinitely
(<**>) :: Applicative u => ((t :. u) := (a -> b)) -> ((t :. u) := a) -> (t :. u) := b Source #
Infix versions of apply
with various nesting levels
(<***>) :: (Applicative u, Applicative v) => ((t :. (u :. v)) := (a -> b)) -> ((t :. (u :. v)) := a) -> (t :. (u :. v)) := b Source #
(<****>) :: (Applicative u, Applicative v, Applicative w) => ((t :. (u :. (v :. w))) := (a -> b)) -> ((t :. (u :. (v :. w))) := a) -> (t :. (u :. (v :. w))) := b Source #
Instances
Applicative Maybe Source # | |
Defined in Pandora.Paradigm.Basis.Maybe Methods (<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b Source # apply :: Maybe (a -> b) -> Maybe a -> Maybe b Source # (*>) :: Maybe a -> Maybe b -> Maybe b Source # (<*) :: Maybe a -> Maybe b -> Maybe a Source # forever :: Maybe a -> Maybe b Source # (<**>) :: Applicative u => ((Maybe :. u) := (a -> b)) -> ((Maybe :. u) := a) -> (Maybe :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((Maybe :. (u :. v)) := (a -> b)) -> ((Maybe :. (u :. v)) := a) -> (Maybe :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((Maybe :. (u :. (v :. w))) := (a -> b)) -> ((Maybe :. (u :. (v :. w))) := a) -> (Maybe :. (u :. (v :. w))) := b Source # | |
Applicative Stack Source # | |
Defined in Pandora.Paradigm.Structure.Specific.Stack Methods (<*>) :: Stack (a -> b) -> Stack a -> Stack b Source # apply :: Stack (a -> b) -> Stack a -> Stack b Source # (*>) :: Stack a -> Stack b -> Stack b Source # (<*) :: Stack a -> Stack b -> Stack a Source # forever :: Stack a -> Stack b Source # (<**>) :: Applicative u => ((Stack :. u) := (a -> b)) -> ((Stack :. u) := a) -> (Stack :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((Stack :. (u :. v)) := (a -> b)) -> ((Stack :. (u :. v)) := a) -> (Stack :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((Stack :. (u :. (v :. w))) := (a -> b)) -> ((Stack :. (u :. (v :. w))) := a) -> (Stack :. (u :. (v :. w))) := b Source # | |
Applicative Identity Source # | |
Defined in Pandora.Paradigm.Basis.Identity Methods (<*>) :: Identity (a -> b) -> Identity a -> Identity b Source # apply :: Identity (a -> b) -> Identity a -> Identity b Source # (*>) :: Identity a -> Identity b -> Identity b Source # (<*) :: Identity a -> Identity b -> Identity a Source # forever :: Identity a -> Identity b Source # (<**>) :: Applicative u => ((Identity :. u) := (a -> b)) -> ((Identity :. u) := a) -> (Identity :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((Identity :. (u :. v)) := (a -> b)) -> ((Identity :. (u :. v)) := a) -> (Identity :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((Identity :. (u :. (v :. w))) := (a -> b)) -> ((Identity :. (u :. (v :. w))) := a) -> (Identity :. (u :. (v :. w))) := b Source # | |
Applicative t => Applicative (Yoneda t) Source # | |
Defined in Pandora.Paradigm.Basis.Yoneda Methods (<*>) :: Yoneda t (a -> b) -> Yoneda t a -> Yoneda t b Source # apply :: Yoneda t (a -> b) -> Yoneda t a -> Yoneda t b Source # (*>) :: Yoneda t a -> Yoneda t b -> Yoneda t b Source # (<*) :: Yoneda t a -> Yoneda t b -> Yoneda t a Source # forever :: Yoneda t a -> Yoneda t b Source # (<**>) :: Applicative u => ((Yoneda t :. u) := (a -> b)) -> ((Yoneda t :. u) := a) -> (Yoneda t :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((Yoneda t :. (u :. v)) := (a -> b)) -> ((Yoneda t :. (u :. v)) := a) -> (Yoneda t :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((Yoneda t :. (u :. (v :. w))) := (a -> b)) -> ((Yoneda t :. (u :. (v :. w))) := a) -> (Yoneda t :. (u :. (v :. w))) := b Source # | |
Applicative (Proxy :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Basis.Proxy Methods (<*>) :: Proxy (a -> b) -> Proxy a -> Proxy b Source # apply :: Proxy (a -> b) -> Proxy a -> Proxy b Source # (*>) :: Proxy a -> Proxy b -> Proxy b Source # (<*) :: Proxy a -> Proxy b -> Proxy a Source # forever :: Proxy a -> Proxy b Source # (<**>) :: Applicative u => ((Proxy :. u) := (a -> b)) -> ((Proxy :. u) := a) -> (Proxy :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((Proxy :. (u :. v)) := (a -> b)) -> ((Proxy :. (u :. v)) := a) -> (Proxy :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((Proxy :. (u :. (v :. w))) := (a -> b)) -> ((Proxy :. (u :. (v :. w))) := a) -> (Proxy :. (u :. (v :. w))) := b Source # | |
Applicative (Environment e) Source # | |
Defined in Pandora.Paradigm.Inventory.Environment Methods (<*>) :: Environment e (a -> b) -> Environment e a -> Environment e b Source # apply :: Environment e (a -> b) -> Environment e a -> Environment e b Source # (*>) :: Environment e a -> Environment e b -> Environment e b Source # (<*) :: Environment e a -> Environment e b -> Environment e a Source # forever :: Environment e a -> Environment e b Source # (<**>) :: Applicative u => ((Environment e :. u) := (a -> b)) -> ((Environment e :. u) := a) -> (Environment e :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((Environment e :. (u :. v)) := (a -> b)) -> ((Environment e :. (u :. v)) := a) -> (Environment e :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((Environment e :. (u :. (v :. w))) := (a -> b)) -> ((Environment e :. (u :. (v :. w))) := a) -> (Environment e :. (u :. (v :. w))) := b Source # | |
Covariant t => Applicative (Free t) Source # | |
Defined in Pandora.Paradigm.Basis.Free Methods (<*>) :: Free t (a -> b) -> Free t a -> Free t b Source # apply :: Free t (a -> b) -> Free t a -> Free t b Source # (*>) :: Free t a -> Free t b -> Free t b Source # (<*) :: Free t a -> Free t b -> Free t a Source # forever :: Free t a -> Free t b Source # (<**>) :: Applicative u => ((Free t :. u) := (a -> b)) -> ((Free t :. u) := a) -> (Free t :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((Free t :. (u :. v)) := (a -> b)) -> ((Free t :. (u :. v)) := a) -> (Free t :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((Free t :. (u :. (v :. w))) := (a -> b)) -> ((Free t :. (u :. (v :. w))) := a) -> (Free t :. (u :. (v :. w))) := b Source # | |
Semigroup e => Applicative (Validation e) Source # | |
Defined in Pandora.Paradigm.Basis.Validation Methods (<*>) :: Validation e (a -> b) -> Validation e a -> Validation e b Source # apply :: Validation e (a -> b) -> Validation e a -> Validation e b Source # (*>) :: Validation e a -> Validation e b -> Validation e b Source # (<*) :: Validation e a -> Validation e b -> Validation e a Source # forever :: Validation e a -> Validation e b Source # (<**>) :: Applicative u => ((Validation e :. u) := (a -> b)) -> ((Validation e :. u) := a) -> (Validation e :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((Validation e :. (u :. v)) := (a -> b)) -> ((Validation e :. (u :. v)) := a) -> (Validation e :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((Validation e :. (u :. (v :. w))) := (a -> b)) -> ((Validation e :. (u :. (v :. w))) := a) -> (Validation e :. (u :. (v :. w))) := b Source # | |
Applicative t => Applicative (Twister t) Source # | |
Defined in Pandora.Paradigm.Basis.Twister Methods (<*>) :: Twister t (a -> b) -> Twister t a -> Twister t b Source # apply :: Twister t (a -> b) -> Twister t a -> Twister t b Source # (*>) :: Twister t a -> Twister t b -> Twister t b Source # (<*) :: Twister t a -> Twister t b -> Twister t a Source # forever :: Twister t a -> Twister t b Source # (<**>) :: Applicative u => ((Twister t :. u) := (a -> b)) -> ((Twister t :. u) := a) -> (Twister t :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((Twister t :. (u :. v)) := (a -> b)) -> ((Twister t :. (u :. v)) := a) -> (Twister t :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((Twister t :. (u :. (v :. w))) := (a -> b)) -> ((Twister t :. (u :. (v :. w))) := a) -> (Twister t :. (u :. (v :. w))) := b Source # | |
Semigroup e => Applicative (Accumulator e) Source # | |
Defined in Pandora.Paradigm.Inventory.Accumulator Methods (<*>) :: Accumulator e (a -> b) -> Accumulator e a -> Accumulator e b Source # apply :: Accumulator e (a -> b) -> Accumulator e a -> Accumulator e b Source # (*>) :: Accumulator e a -> Accumulator e b -> Accumulator e b Source # (<*) :: Accumulator e a -> Accumulator e b -> Accumulator e a Source # forever :: Accumulator e a -> Accumulator e b Source # (<**>) :: Applicative u => ((Accumulator e :. u) := (a -> b)) -> ((Accumulator e :. u) := a) -> (Accumulator e :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((Accumulator e :. (u :. v)) := (a -> b)) -> ((Accumulator e :. (u :. v)) := a) -> (Accumulator e :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((Accumulator e :. (u :. (v :. w))) := (a -> b)) -> ((Accumulator e :. (u :. (v :. w))) := a) -> (Accumulator e :. (u :. (v :. w))) := b Source # | |
Applicative (State s) Source # | |
Defined in Pandora.Paradigm.Inventory.State Methods (<*>) :: State s (a -> b) -> State s a -> State s b Source # apply :: State s (a -> b) -> State s a -> State s b Source # (*>) :: State s a -> State s b -> State s b Source # (<*) :: State s a -> State s b -> State s a Source # forever :: State s a -> State s b Source # (<**>) :: Applicative u => ((State s :. u) := (a -> b)) -> ((State s :. u) := a) -> (State s :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((State s :. (u :. v)) := (a -> b)) -> ((State s :. (u :. v)) := a) -> (State s :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((State s :. (u :. (v :. w))) := (a -> b)) -> ((State s :. (u :. (v :. w))) := a) -> (State s :. (u :. (v :. w))) := b Source # | |
Applicative t => Applicative (Jack t) Source # | |
Defined in Pandora.Paradigm.Basis.Jack Methods (<*>) :: Jack t (a -> b) -> Jack t a -> Jack t b Source # apply :: Jack t (a -> b) -> Jack t a -> Jack t b Source # (*>) :: Jack t a -> Jack t b -> Jack t b Source # (<*) :: Jack t a -> Jack t b -> Jack t a Source # forever :: Jack t a -> Jack t b Source # (<**>) :: Applicative u => ((Jack t :. u) := (a -> b)) -> ((Jack t :. u) := a) -> (Jack t :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((Jack t :. (u :. v)) := (a -> b)) -> ((Jack t :. (u :. v)) := a) -> (Jack t :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((Jack t :. (u :. (v :. w))) := (a -> b)) -> ((Jack t :. (u :. (v :. w))) := a) -> (Jack t :. (u :. (v :. w))) := b Source # | |
Applicative (Conclusion e) Source # | |
Defined in Pandora.Paradigm.Basis.Conclusion Methods (<*>) :: Conclusion e (a -> b) -> Conclusion e a -> Conclusion e b Source # apply :: Conclusion e (a -> b) -> Conclusion e a -> Conclusion e b Source # (*>) :: Conclusion e a -> Conclusion e b -> Conclusion e b Source # (<*) :: Conclusion e a -> Conclusion e b -> Conclusion e a Source # forever :: Conclusion e a -> Conclusion e b Source # (<**>) :: Applicative u => ((Conclusion e :. u) := (a -> b)) -> ((Conclusion e :. u) := a) -> (Conclusion e :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((Conclusion e :. (u :. v)) := (a -> b)) -> ((Conclusion e :. (u :. v)) := a) -> (Conclusion e :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((Conclusion e :. (u :. (v :. w))) := (a -> b)) -> ((Conclusion e :. (u :. (v :. w))) := a) -> (Conclusion e :. (u :. (v :. w))) := b Source # | |
Applicative (Schema t u) => Applicative (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Joint.Transformer Methods (<*>) :: (t :> u) (a -> b) -> (t :> u) a -> (t :> u) b Source # apply :: (t :> u) (a -> b) -> (t :> u) a -> (t :> u) b Source # (*>) :: (t :> u) a -> (t :> u) b -> (t :> u) b Source # (<*) :: (t :> u) a -> (t :> u) b -> (t :> u) a Source # forever :: (t :> u) a -> (t :> u) b Source # (<**>) :: Applicative u0 => (((t :> u) :. u0) := (a -> b)) -> (((t :> u) :. u0) := a) -> ((t :> u) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => (((t :> u) :. (u0 :. v)) := (a -> b)) -> (((t :> u) :. (u0 :. v)) := a) -> ((t :> u) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => (((t :> u) :. (u0 :. (v :. w))) := (a -> b)) -> (((t :> u) :. (u0 :. (v :. w))) := a) -> ((t :> u) :. (u0 :. (v :. w))) := b Source # | |
Applicative (Tagged tag) Source # | |
Defined in Pandora.Paradigm.Basis.Tagged Methods (<*>) :: Tagged tag (a -> b) -> Tagged tag a -> Tagged tag b Source # apply :: Tagged tag (a -> b) -> Tagged tag a -> Tagged tag b Source # (*>) :: Tagged tag a -> Tagged tag b -> Tagged tag b Source # (<*) :: Tagged tag a -> Tagged tag b -> Tagged tag a Source # forever :: Tagged tag a -> Tagged tag b Source # (<**>) :: Applicative u => ((Tagged tag :. u) := (a -> b)) -> ((Tagged tag :. u) := a) -> (Tagged tag :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((Tagged tag :. (u :. v)) := (a -> b)) -> ((Tagged tag :. (u :. v)) := a) -> (Tagged tag :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((Tagged tag :. (u :. (v :. w))) := (a -> b)) -> ((Tagged tag :. (u :. (v :. w))) := a) -> (Tagged tag :. (u :. (v :. w))) := b Source # | |
Applicative ((->) e :: Type -> Type) Source # | |
Defined in Pandora.Pattern.Functor.Applicative Methods (<*>) :: (e -> (a -> b)) -> (e -> a) -> e -> b Source # apply :: (e -> (a -> b)) -> (e -> a) -> e -> b Source # (*>) :: (e -> a) -> (e -> b) -> e -> b Source # (<*) :: (e -> a) -> (e -> b) -> e -> a Source # forever :: (e -> a) -> e -> b Source # (<**>) :: Applicative u => (((->) e :. u) := (a -> b)) -> (((->) e :. u) := a) -> ((->) e :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => (((->) e :. (u :. v)) := (a -> b)) -> (((->) e :. (u :. v)) := a) -> ((->) e :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => (((->) e :. (u :. (v :. w))) := (a -> b)) -> (((->) e :. (u :. (v :. w))) := a) -> ((->) e :. (u :. (v :. w))) := b Source # | |
Covariant t => Applicative (Continuation r t) Source # | |
Defined in Pandora.Paradigm.Basis.Continuation Methods (<*>) :: Continuation r t (a -> b) -> Continuation r t a -> Continuation r t b Source # apply :: Continuation r t (a -> b) -> Continuation r t a -> Continuation r t b Source # (*>) :: Continuation r t a -> Continuation r t b -> Continuation r t b Source # (<*) :: Continuation r t a -> Continuation r t b -> Continuation r t a Source # forever :: Continuation r t a -> Continuation r t b Source # (<**>) :: Applicative u => ((Continuation r t :. u) := (a -> b)) -> ((Continuation r t :. u) := a) -> (Continuation r t :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((Continuation r t :. (u :. v)) := (a -> b)) -> ((Continuation r t :. (u :. v)) := a) -> (Continuation r t :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((Continuation r t :. (u :. (v :. w))) := (a -> b)) -> ((Continuation r t :. (u :. (v :. w))) := a) -> (Continuation r t :. (u :. (v :. w))) := b Source # | |
Applicative u => Applicative (TU Co Co ((->) e :: Type -> Type) u) Source # | |
Defined in Pandora.Paradigm.Inventory.Environment Methods (<*>) :: TU Co Co ((->) e) u (a -> b) -> TU Co Co ((->) e) u a -> TU Co Co ((->) e) u b Source # apply :: TU Co Co ((->) e) u (a -> b) -> TU Co Co ((->) e) u a -> TU Co Co ((->) e) u b Source # (*>) :: TU Co Co ((->) e) u a -> TU Co Co ((->) e) u b -> TU Co Co ((->) e) u b Source # (<*) :: TU Co Co ((->) e) u a -> TU Co Co ((->) e) u b -> TU Co Co ((->) e) u a Source # forever :: TU Co Co ((->) e) u a -> TU Co Co ((->) e) u b Source # (<**>) :: Applicative u0 => ((TU Co Co ((->) e) u :. u0) := (a -> b)) -> ((TU Co Co ((->) e) u :. u0) := a) -> (TU Co Co ((->) e) u :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => ((TU Co Co ((->) e) u :. (u0 :. v)) := (a -> b)) -> ((TU Co Co ((->) e) u :. (u0 :. v)) := a) -> (TU Co Co ((->) e) u :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => ((TU Co Co ((->) e) u :. (u0 :. (v :. w))) := (a -> b)) -> ((TU Co Co ((->) e) u :. (u0 :. (v :. w))) := a) -> (TU Co Co ((->) e) u :. (u0 :. (v :. w))) := b Source # | |
(Semigroup e, Applicative u) => Applicative (UT Co Co ((:*:) e) u) Source # | |
Defined in Pandora.Paradigm.Inventory.Accumulator Methods (<*>) :: UT Co Co ((:*:) e) u (a -> b) -> UT Co Co ((:*:) e) u a -> UT Co Co ((:*:) e) u b Source # apply :: UT Co Co ((:*:) e) u (a -> b) -> UT Co Co ((:*:) e) u a -> UT Co Co ((:*:) e) u b Source # (*>) :: UT Co Co ((:*:) e) u a -> UT Co Co ((:*:) e) u b -> UT Co Co ((:*:) e) u b Source # (<*) :: UT Co Co ((:*:) e) u a -> UT Co Co ((:*:) e) u b -> UT Co Co ((:*:) e) u a Source # forever :: UT Co Co ((:*:) e) u a -> UT Co Co ((:*:) e) u b Source # (<**>) :: Applicative u0 => ((UT Co Co ((:*:) e) u :. u0) := (a -> b)) -> ((UT Co Co ((:*:) e) u :. u0) := a) -> (UT Co Co ((:*:) e) u :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => ((UT Co Co ((:*:) e) u :. (u0 :. v)) := (a -> b)) -> ((UT Co Co ((:*:) e) u :. (u0 :. v)) := a) -> (UT Co Co ((:*:) e) u :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => ((UT Co Co ((:*:) e) u :. (u0 :. (v :. w))) := (a -> b)) -> ((UT Co Co ((:*:) e) u :. (u0 :. (v :. w))) := a) -> (UT Co Co ((:*:) e) u :. (u0 :. (v :. w))) := b Source # | |
Applicative u => Applicative (UT Co Co Maybe u) Source # | |
Defined in Pandora.Paradigm.Basis.Maybe Methods (<*>) :: UT Co Co Maybe u (a -> b) -> UT Co Co Maybe u a -> UT Co Co Maybe u b Source # apply :: UT Co Co Maybe u (a -> b) -> UT Co Co Maybe u a -> UT Co Co Maybe u b Source # (*>) :: UT Co Co Maybe u a -> UT Co Co Maybe u b -> UT Co Co Maybe u b Source # (<*) :: UT Co Co Maybe u a -> UT Co Co Maybe u b -> UT Co Co Maybe u a Source # forever :: UT Co Co Maybe u a -> UT Co Co Maybe u b Source # (<**>) :: Applicative u0 => ((UT Co Co Maybe u :. u0) := (a -> b)) -> ((UT Co Co Maybe u :. u0) := a) -> (UT Co Co Maybe u :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => ((UT Co Co Maybe u :. (u0 :. v)) := (a -> b)) -> ((UT Co Co Maybe u :. (u0 :. v)) := a) -> (UT Co Co Maybe u :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => ((UT Co Co Maybe u :. (u0 :. (v :. w))) := (a -> b)) -> ((UT Co Co Maybe u :. (u0 :. (v :. w))) := a) -> (UT Co Co Maybe u :. (u0 :. (v :. w))) := b Source # | |
Applicative u => Applicative (UT Co Co (Conclusion e) u) Source # | |
Defined in Pandora.Paradigm.Basis.Conclusion Methods (<*>) :: UT Co Co (Conclusion e) u (a -> b) -> UT Co Co (Conclusion e) u a -> UT Co Co (Conclusion e) u b Source # apply :: UT Co Co (Conclusion e) u (a -> b) -> UT Co Co (Conclusion e) u a -> UT Co Co (Conclusion e) u b Source # (*>) :: UT Co Co (Conclusion e) u a -> UT Co Co (Conclusion e) u b -> UT Co Co (Conclusion e) u b Source # (<*) :: UT Co Co (Conclusion e) u a -> UT Co Co (Conclusion e) u b -> UT Co Co (Conclusion e) u a Source # forever :: UT Co Co (Conclusion e) u a -> UT Co Co (Conclusion e) u b Source # (<**>) :: Applicative u0 => ((UT Co Co (Conclusion e) u :. u0) := (a -> b)) -> ((UT Co Co (Conclusion e) u :. u0) := a) -> (UT Co Co (Conclusion e) u :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => ((UT Co Co (Conclusion e) u :. (u0 :. v)) := (a -> b)) -> ((UT Co Co (Conclusion e) u :. (u0 :. v)) := a) -> (UT Co Co (Conclusion e) u :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => ((UT Co Co (Conclusion e) u :. (u0 :. (v :. w))) := (a -> b)) -> ((UT Co Co (Conclusion e) u :. (u0 :. (v :. w))) := a) -> (UT Co Co (Conclusion e) u :. (u0 :. (v :. w))) := b Source # | |
Bindable u => Applicative (TUV Co Co Co ((->) s :: Type -> Type) u ((:*:) s)) Source # | |
Defined in Pandora.Paradigm.Inventory.State Methods (<*>) :: TUV Co Co Co ((->) s) u ((:*:) s) (a -> b) -> TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # apply :: TUV Co Co Co ((->) s) u ((:*:) s) (a -> b) -> TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # (*>) :: TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # (<*) :: TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b -> TUV Co Co Co ((->) s) u ((:*:) s) a Source # forever :: TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # (<**>) :: Applicative u0 => ((TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := (a -> b)) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := (a -> b)) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := (a -> b)) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := b Source # |