pandora-0.2.2: A box of patterns and paradigms

Safe HaskellSafe
LanguageHaskell2010

Pandora.Pattern.Functor.Applicative

Synopsis

Documentation

class Covariant t => Applicative t where Source #

When providing a new instance, you should ensure it satisfies the three laws:
* Interpreted: (.) <$> u <*> v <*> w ≡ u <*> (v <*> w)
* Left interchange: x <*> (f <$> y) ≡ (. f) <$> x <*> y
* Right interchange: f <$> (x <*> y) ≡ (f .) <$> x <*> y

Minimal complete definition

(<*>)

Methods

(<*>) :: t (a -> b) -> t a -> t b infixl 4 Source #

Infix version of apply

apply :: t (a -> b) -> t a -> t b Source #

Prefix version of <*>

(*>) :: t a -> t b -> t b infixl 4 Source #

Sequence actions, discarding the value of the first argument

(<*) :: t a -> t b -> t a infixl 4 Source #

Sequence actions, discarding the value of the second argument

forever :: t a -> t b Source #

Repeat an action indefinitely

(<**>) :: Applicative u => ((t :. u) := (a -> b)) -> ((t :. u) := a) -> (t :. u) := b Source #

Infix versions of apply with various nesting levels

(<***>) :: (Applicative u, Applicative v) => ((t :. (u :. v)) := (a -> b)) -> ((t :. (u :. v)) := a) -> (t :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((t :. (u :. (v :. w))) := (a -> b)) -> ((t :. (u :. (v :. w))) := a) -> (t :. (u :. (v :. w))) := b Source #

Instances
Applicative Maybe Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Maybe

Methods

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b Source #

apply :: Maybe (a -> b) -> Maybe a -> Maybe b Source #

(*>) :: Maybe a -> Maybe b -> Maybe b Source #

(<*) :: Maybe a -> Maybe b -> Maybe a Source #

forever :: Maybe a -> Maybe b Source #

(<**>) :: Applicative u => ((Maybe :. u) := (a -> b)) -> ((Maybe :. u) := a) -> (Maybe :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Maybe :. (u :. v)) := (a -> b)) -> ((Maybe :. (u :. v)) := a) -> (Maybe :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Maybe :. (u :. (v :. w))) := (a -> b)) -> ((Maybe :. (u :. (v :. w))) := a) -> (Maybe :. (u :. (v :. w))) := b Source #

Applicative Stack Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Specific.Stack

Methods

(<*>) :: Stack (a -> b) -> Stack a -> Stack b Source #

apply :: Stack (a -> b) -> Stack a -> Stack b Source #

(*>) :: Stack a -> Stack b -> Stack b Source #

(<*) :: Stack a -> Stack b -> Stack a Source #

forever :: Stack a -> Stack b Source #

(<**>) :: Applicative u => ((Stack :. u) := (a -> b)) -> ((Stack :. u) := a) -> (Stack :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Stack :. (u :. v)) := (a -> b)) -> ((Stack :. (u :. v)) := a) -> (Stack :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Stack :. (u :. (v :. w))) := (a -> b)) -> ((Stack :. (u :. (v :. w))) := a) -> (Stack :. (u :. (v :. w))) := b Source #

Applicative Identity Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Identity

Methods

(<*>) :: Identity (a -> b) -> Identity a -> Identity b Source #

apply :: Identity (a -> b) -> Identity a -> Identity b Source #

(*>) :: Identity a -> Identity b -> Identity b Source #

(<*) :: Identity a -> Identity b -> Identity a Source #

forever :: Identity a -> Identity b Source #

(<**>) :: Applicative u => ((Identity :. u) := (a -> b)) -> ((Identity :. u) := a) -> (Identity :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Identity :. (u :. v)) := (a -> b)) -> ((Identity :. (u :. v)) := a) -> (Identity :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Identity :. (u :. (v :. w))) := (a -> b)) -> ((Identity :. (u :. (v :. w))) := a) -> (Identity :. (u :. (v :. w))) := b Source #

Applicative t => Applicative (Yoneda t) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Yoneda

Methods

(<*>) :: Yoneda t (a -> b) -> Yoneda t a -> Yoneda t b Source #

apply :: Yoneda t (a -> b) -> Yoneda t a -> Yoneda t b Source #

(*>) :: Yoneda t a -> Yoneda t b -> Yoneda t b Source #

(<*) :: Yoneda t a -> Yoneda t b -> Yoneda t a Source #

forever :: Yoneda t a -> Yoneda t b Source #

(<**>) :: Applicative u => ((Yoneda t :. u) := (a -> b)) -> ((Yoneda t :. u) := a) -> (Yoneda t :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Yoneda t :. (u :. v)) := (a -> b)) -> ((Yoneda t :. (u :. v)) := a) -> (Yoneda t :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Yoneda t :. (u :. (v :. w))) := (a -> b)) -> ((Yoneda t :. (u :. (v :. w))) := a) -> (Yoneda t :. (u :. (v :. w))) := b Source #

Applicative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Proxy

Methods

(<*>) :: Proxy (a -> b) -> Proxy a -> Proxy b Source #

apply :: Proxy (a -> b) -> Proxy a -> Proxy b Source #

(*>) :: Proxy a -> Proxy b -> Proxy b Source #

(<*) :: Proxy a -> Proxy b -> Proxy a Source #

forever :: Proxy a -> Proxy b Source #

(<**>) :: Applicative u => ((Proxy :. u) := (a -> b)) -> ((Proxy :. u) := a) -> (Proxy :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Proxy :. (u :. v)) := (a -> b)) -> ((Proxy :. (u :. v)) := a) -> (Proxy :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Proxy :. (u :. (v :. w))) := (a -> b)) -> ((Proxy :. (u :. (v :. w))) := a) -> (Proxy :. (u :. (v :. w))) := b Source #

Applicative (Environment e) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Environment

Methods

(<*>) :: Environment e (a -> b) -> Environment e a -> Environment e b Source #

apply :: Environment e (a -> b) -> Environment e a -> Environment e b Source #

(*>) :: Environment e a -> Environment e b -> Environment e b Source #

(<*) :: Environment e a -> Environment e b -> Environment e a Source #

forever :: Environment e a -> Environment e b Source #

(<**>) :: Applicative u => ((Environment e :. u) := (a -> b)) -> ((Environment e :. u) := a) -> (Environment e :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Environment e :. (u :. v)) := (a -> b)) -> ((Environment e :. (u :. v)) := a) -> (Environment e :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Environment e :. (u :. (v :. w))) := (a -> b)) -> ((Environment e :. (u :. (v :. w))) := a) -> (Environment e :. (u :. (v :. w))) := b Source #

Covariant t => Applicative (Free t) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Free

Methods

(<*>) :: Free t (a -> b) -> Free t a -> Free t b Source #

apply :: Free t (a -> b) -> Free t a -> Free t b Source #

(*>) :: Free t a -> Free t b -> Free t b Source #

(<*) :: Free t a -> Free t b -> Free t a Source #

forever :: Free t a -> Free t b Source #

(<**>) :: Applicative u => ((Free t :. u) := (a -> b)) -> ((Free t :. u) := a) -> (Free t :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Free t :. (u :. v)) := (a -> b)) -> ((Free t :. (u :. v)) := a) -> (Free t :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Free t :. (u :. (v :. w))) := (a -> b)) -> ((Free t :. (u :. (v :. w))) := a) -> (Free t :. (u :. (v :. w))) := b Source #

Semigroup e => Applicative (Validation e) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Validation

Methods

(<*>) :: Validation e (a -> b) -> Validation e a -> Validation e b Source #

apply :: Validation e (a -> b) -> Validation e a -> Validation e b Source #

(*>) :: Validation e a -> Validation e b -> Validation e b Source #

(<*) :: Validation e a -> Validation e b -> Validation e a Source #

forever :: Validation e a -> Validation e b Source #

(<**>) :: Applicative u => ((Validation e :. u) := (a -> b)) -> ((Validation e :. u) := a) -> (Validation e :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Validation e :. (u :. v)) := (a -> b)) -> ((Validation e :. (u :. v)) := a) -> (Validation e :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Validation e :. (u :. (v :. w))) := (a -> b)) -> ((Validation e :. (u :. (v :. w))) := a) -> (Validation e :. (u :. (v :. w))) := b Source #

Applicative t => Applicative (Twister t) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Twister

Methods

(<*>) :: Twister t (a -> b) -> Twister t a -> Twister t b Source #

apply :: Twister t (a -> b) -> Twister t a -> Twister t b Source #

(*>) :: Twister t a -> Twister t b -> Twister t b Source #

(<*) :: Twister t a -> Twister t b -> Twister t a Source #

forever :: Twister t a -> Twister t b Source #

(<**>) :: Applicative u => ((Twister t :. u) := (a -> b)) -> ((Twister t :. u) := a) -> (Twister t :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Twister t :. (u :. v)) := (a -> b)) -> ((Twister t :. (u :. v)) := a) -> (Twister t :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Twister t :. (u :. (v :. w))) := (a -> b)) -> ((Twister t :. (u :. (v :. w))) := a) -> (Twister t :. (u :. (v :. w))) := b Source #

Semigroup e => Applicative (Accumulator e) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Accumulator

Methods

(<*>) :: Accumulator e (a -> b) -> Accumulator e a -> Accumulator e b Source #

apply :: Accumulator e (a -> b) -> Accumulator e a -> Accumulator e b Source #

(*>) :: Accumulator e a -> Accumulator e b -> Accumulator e b Source #

(<*) :: Accumulator e a -> Accumulator e b -> Accumulator e a Source #

forever :: Accumulator e a -> Accumulator e b Source #

(<**>) :: Applicative u => ((Accumulator e :. u) := (a -> b)) -> ((Accumulator e :. u) := a) -> (Accumulator e :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Accumulator e :. (u :. v)) := (a -> b)) -> ((Accumulator e :. (u :. v)) := a) -> (Accumulator e :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Accumulator e :. (u :. (v :. w))) := (a -> b)) -> ((Accumulator e :. (u :. (v :. w))) := a) -> (Accumulator e :. (u :. (v :. w))) := b Source #

Applicative (State s) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.State

Methods

(<*>) :: State s (a -> b) -> State s a -> State s b Source #

apply :: State s (a -> b) -> State s a -> State s b Source #

(*>) :: State s a -> State s b -> State s b Source #

(<*) :: State s a -> State s b -> State s a Source #

forever :: State s a -> State s b Source #

(<**>) :: Applicative u => ((State s :. u) := (a -> b)) -> ((State s :. u) := a) -> (State s :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((State s :. (u :. v)) := (a -> b)) -> ((State s :. (u :. v)) := a) -> (State s :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((State s :. (u :. (v :. w))) := (a -> b)) -> ((State s :. (u :. (v :. w))) := a) -> (State s :. (u :. (v :. w))) := b Source #

Applicative t => Applicative (Jack t) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Jack

Methods

(<*>) :: Jack t (a -> b) -> Jack t a -> Jack t b Source #

apply :: Jack t (a -> b) -> Jack t a -> Jack t b Source #

(*>) :: Jack t a -> Jack t b -> Jack t b Source #

(<*) :: Jack t a -> Jack t b -> Jack t a Source #

forever :: Jack t a -> Jack t b Source #

(<**>) :: Applicative u => ((Jack t :. u) := (a -> b)) -> ((Jack t :. u) := a) -> (Jack t :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Jack t :. (u :. v)) := (a -> b)) -> ((Jack t :. (u :. v)) := a) -> (Jack t :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Jack t :. (u :. (v :. w))) := (a -> b)) -> ((Jack t :. (u :. (v :. w))) := a) -> (Jack t :. (u :. (v :. w))) := b Source #

Applicative (Conclusion e) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Conclusion

Methods

(<*>) :: Conclusion e (a -> b) -> Conclusion e a -> Conclusion e b Source #

apply :: Conclusion e (a -> b) -> Conclusion e a -> Conclusion e b Source #

(*>) :: Conclusion e a -> Conclusion e b -> Conclusion e b Source #

(<*) :: Conclusion e a -> Conclusion e b -> Conclusion e a Source #

forever :: Conclusion e a -> Conclusion e b Source #

(<**>) :: Applicative u => ((Conclusion e :. u) := (a -> b)) -> ((Conclusion e :. u) := a) -> (Conclusion e :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Conclusion e :. (u :. v)) := (a -> b)) -> ((Conclusion e :. (u :. v)) := a) -> (Conclusion e :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Conclusion e :. (u :. (v :. w))) := (a -> b)) -> ((Conclusion e :. (u :. (v :. w))) := a) -> (Conclusion e :. (u :. (v :. w))) := b Source #

Applicative (Schema t u) => Applicative (t :> u) Source # 
Instance details

Defined in Pandora.Paradigm.Controlflow.Joint.Transformer

Methods

(<*>) :: (t :> u) (a -> b) -> (t :> u) a -> (t :> u) b Source #

apply :: (t :> u) (a -> b) -> (t :> u) a -> (t :> u) b Source #

(*>) :: (t :> u) a -> (t :> u) b -> (t :> u) b Source #

(<*) :: (t :> u) a -> (t :> u) b -> (t :> u) a Source #

forever :: (t :> u) a -> (t :> u) b Source #

(<**>) :: Applicative u0 => (((t :> u) :. u0) := (a -> b)) -> (((t :> u) :. u0) := a) -> ((t :> u) :. u0) := b Source #

(<***>) :: (Applicative u0, Applicative v) => (((t :> u) :. (u0 :. v)) := (a -> b)) -> (((t :> u) :. (u0 :. v)) := a) -> ((t :> u) :. (u0 :. v)) := b Source #

(<****>) :: (Applicative u0, Applicative v, Applicative w) => (((t :> u) :. (u0 :. (v :. w))) := (a -> b)) -> (((t :> u) :. (u0 :. (v :. w))) := a) -> ((t :> u) :. (u0 :. (v :. w))) := b Source #

Applicative (Tagged tag) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Tagged

Methods

(<*>) :: Tagged tag (a -> b) -> Tagged tag a -> Tagged tag b Source #

apply :: Tagged tag (a -> b) -> Tagged tag a -> Tagged tag b Source #

(*>) :: Tagged tag a -> Tagged tag b -> Tagged tag b Source #

(<*) :: Tagged tag a -> Tagged tag b -> Tagged tag a Source #

forever :: Tagged tag a -> Tagged tag b Source #

(<**>) :: Applicative u => ((Tagged tag :. u) := (a -> b)) -> ((Tagged tag :. u) := a) -> (Tagged tag :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Tagged tag :. (u :. v)) := (a -> b)) -> ((Tagged tag :. (u :. v)) := a) -> (Tagged tag :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Tagged tag :. (u :. (v :. w))) := (a -> b)) -> ((Tagged tag :. (u :. (v :. w))) := a) -> (Tagged tag :. (u :. (v :. w))) := b Source #

Applicative ((->) e :: Type -> Type) Source # 
Instance details

Defined in Pandora.Pattern.Functor.Applicative

Methods

(<*>) :: (e -> (a -> b)) -> (e -> a) -> e -> b Source #

apply :: (e -> (a -> b)) -> (e -> a) -> e -> b Source #

(*>) :: (e -> a) -> (e -> b) -> e -> b Source #

(<*) :: (e -> a) -> (e -> b) -> e -> a Source #

forever :: (e -> a) -> e -> b Source #

(<**>) :: Applicative u => (((->) e :. u) := (a -> b)) -> (((->) e :. u) := a) -> ((->) e :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => (((->) e :. (u :. v)) := (a -> b)) -> (((->) e :. (u :. v)) := a) -> ((->) e :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => (((->) e :. (u :. (v :. w))) := (a -> b)) -> (((->) e :. (u :. (v :. w))) := a) -> ((->) e :. (u :. (v :. w))) := b Source #

Covariant t => Applicative (Continuation r t) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Continuation

Methods

(<*>) :: Continuation r t (a -> b) -> Continuation r t a -> Continuation r t b Source #

apply :: Continuation r t (a -> b) -> Continuation r t a -> Continuation r t b Source #

(*>) :: Continuation r t a -> Continuation r t b -> Continuation r t b Source #

(<*) :: Continuation r t a -> Continuation r t b -> Continuation r t a Source #

forever :: Continuation r t a -> Continuation r t b Source #

(<**>) :: Applicative u => ((Continuation r t :. u) := (a -> b)) -> ((Continuation r t :. u) := a) -> (Continuation r t :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Continuation r t :. (u :. v)) := (a -> b)) -> ((Continuation r t :. (u :. v)) := a) -> (Continuation r t :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Continuation r t :. (u :. (v :. w))) := (a -> b)) -> ((Continuation r t :. (u :. (v :. w))) := a) -> (Continuation r t :. (u :. (v :. w))) := b Source #

Applicative u => Applicative (TU Co Co ((->) e :: Type -> Type) u) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Environment

Methods

(<*>) :: TU Co Co ((->) e) u (a -> b) -> TU Co Co ((->) e) u a -> TU Co Co ((->) e) u b Source #

apply :: TU Co Co ((->) e) u (a -> b) -> TU Co Co ((->) e) u a -> TU Co Co ((->) e) u b Source #

(*>) :: TU Co Co ((->) e) u a -> TU Co Co ((->) e) u b -> TU Co Co ((->) e) u b Source #

(<*) :: TU Co Co ((->) e) u a -> TU Co Co ((->) e) u b -> TU Co Co ((->) e) u a Source #

forever :: TU Co Co ((->) e) u a -> TU Co Co ((->) e) u b Source #

(<**>) :: Applicative u0 => ((TU Co Co ((->) e) u :. u0) := (a -> b)) -> ((TU Co Co ((->) e) u :. u0) := a) -> (TU Co Co ((->) e) u :. u0) := b Source #

(<***>) :: (Applicative u0, Applicative v) => ((TU Co Co ((->) e) u :. (u0 :. v)) := (a -> b)) -> ((TU Co Co ((->) e) u :. (u0 :. v)) := a) -> (TU Co Co ((->) e) u :. (u0 :. v)) := b Source #

(<****>) :: (Applicative u0, Applicative v, Applicative w) => ((TU Co Co ((->) e) u :. (u0 :. (v :. w))) := (a -> b)) -> ((TU Co Co ((->) e) u :. (u0 :. (v :. w))) := a) -> (TU Co Co ((->) e) u :. (u0 :. (v :. w))) := b Source #

(Semigroup e, Applicative u) => Applicative (UT Co Co ((:*:) e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Accumulator

Methods

(<*>) :: UT Co Co ((:*:) e) u (a -> b) -> UT Co Co ((:*:) e) u a -> UT Co Co ((:*:) e) u b Source #

apply :: UT Co Co ((:*:) e) u (a -> b) -> UT Co Co ((:*:) e) u a -> UT Co Co ((:*:) e) u b Source #

(*>) :: UT Co Co ((:*:) e) u a -> UT Co Co ((:*:) e) u b -> UT Co Co ((:*:) e) u b Source #

(<*) :: UT Co Co ((:*:) e) u a -> UT Co Co ((:*:) e) u b -> UT Co Co ((:*:) e) u a Source #

forever :: UT Co Co ((:*:) e) u a -> UT Co Co ((:*:) e) u b Source #

(<**>) :: Applicative u0 => ((UT Co Co ((:*:) e) u :. u0) := (a -> b)) -> ((UT Co Co ((:*:) e) u :. u0) := a) -> (UT Co Co ((:*:) e) u :. u0) := b Source #

(<***>) :: (Applicative u0, Applicative v) => ((UT Co Co ((:*:) e) u :. (u0 :. v)) := (a -> b)) -> ((UT Co Co ((:*:) e) u :. (u0 :. v)) := a) -> (UT Co Co ((:*:) e) u :. (u0 :. v)) := b Source #

(<****>) :: (Applicative u0, Applicative v, Applicative w) => ((UT Co Co ((:*:) e) u :. (u0 :. (v :. w))) := (a -> b)) -> ((UT Co Co ((:*:) e) u :. (u0 :. (v :. w))) := a) -> (UT Co Co ((:*:) e) u :. (u0 :. (v :. w))) := b Source #

Applicative u => Applicative (UT Co Co Maybe u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Maybe

Methods

(<*>) :: UT Co Co Maybe u (a -> b) -> UT Co Co Maybe u a -> UT Co Co Maybe u b Source #

apply :: UT Co Co Maybe u (a -> b) -> UT Co Co Maybe u a -> UT Co Co Maybe u b Source #

(*>) :: UT Co Co Maybe u a -> UT Co Co Maybe u b -> UT Co Co Maybe u b Source #

(<*) :: UT Co Co Maybe u a -> UT Co Co Maybe u b -> UT Co Co Maybe u a Source #

forever :: UT Co Co Maybe u a -> UT Co Co Maybe u b Source #

(<**>) :: Applicative u0 => ((UT Co Co Maybe u :. u0) := (a -> b)) -> ((UT Co Co Maybe u :. u0) := a) -> (UT Co Co Maybe u :. u0) := b Source #

(<***>) :: (Applicative u0, Applicative v) => ((UT Co Co Maybe u :. (u0 :. v)) := (a -> b)) -> ((UT Co Co Maybe u :. (u0 :. v)) := a) -> (UT Co Co Maybe u :. (u0 :. v)) := b Source #

(<****>) :: (Applicative u0, Applicative v, Applicative w) => ((UT Co Co Maybe u :. (u0 :. (v :. w))) := (a -> b)) -> ((UT Co Co Maybe u :. (u0 :. (v :. w))) := a) -> (UT Co Co Maybe u :. (u0 :. (v :. w))) := b Source #

Applicative u => Applicative (UT Co Co (Conclusion e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Conclusion

Methods

(<*>) :: UT Co Co (Conclusion e) u (a -> b) -> UT Co Co (Conclusion e) u a -> UT Co Co (Conclusion e) u b Source #

apply :: UT Co Co (Conclusion e) u (a -> b) -> UT Co Co (Conclusion e) u a -> UT Co Co (Conclusion e) u b Source #

(*>) :: UT Co Co (Conclusion e) u a -> UT Co Co (Conclusion e) u b -> UT Co Co (Conclusion e) u b Source #

(<*) :: UT Co Co (Conclusion e) u a -> UT Co Co (Conclusion e) u b -> UT Co Co (Conclusion e) u a Source #

forever :: UT Co Co (Conclusion e) u a -> UT Co Co (Conclusion e) u b Source #

(<**>) :: Applicative u0 => ((UT Co Co (Conclusion e) u :. u0) := (a -> b)) -> ((UT Co Co (Conclusion e) u :. u0) := a) -> (UT Co Co (Conclusion e) u :. u0) := b Source #

(<***>) :: (Applicative u0, Applicative v) => ((UT Co Co (Conclusion e) u :. (u0 :. v)) := (a -> b)) -> ((UT Co Co (Conclusion e) u :. (u0 :. v)) := a) -> (UT Co Co (Conclusion e) u :. (u0 :. v)) := b Source #

(<****>) :: (Applicative u0, Applicative v, Applicative w) => ((UT Co Co (Conclusion e) u :. (u0 :. (v :. w))) := (a -> b)) -> ((UT Co Co (Conclusion e) u :. (u0 :. (v :. w))) := a) -> (UT Co Co (Conclusion e) u :. (u0 :. (v :. w))) := b Source #

Bindable u => Applicative (TUV Co Co Co ((->) s :: Type -> Type) u ((:*:) s)) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.State

Methods

(<*>) :: TUV Co Co Co ((->) s) u ((:*:) s) (a -> b) -> TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source #

apply :: TUV Co Co Co ((->) s) u ((:*:) s) (a -> b) -> TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source #

(*>) :: TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b -> TUV Co Co Co ((->) s) u ((:*:) s) b Source #

(<*) :: TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b -> TUV Co Co Co ((->) s) u ((:*:) s) a Source #

forever :: TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source #

(<**>) :: Applicative u0 => ((TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := (a -> b)) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := b Source #

(<***>) :: (Applicative u0, Applicative v) => ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := (a -> b)) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := b Source #

(<****>) :: (Applicative u0, Applicative v, Applicative w) => ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := (a -> b)) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := b Source #