pandora-0.2.4: A box of patterns and paradigms
Pandora.Paradigm.Basis.Edges
data Edges a Source #
Constructors
Defined in Pandora.Paradigm.Basis.Edges
Methods
(<$>) :: (a -> b) -> Edges a -> Edges b Source #
comap :: (a -> b) -> Edges a -> Edges b Source #
(<$) :: a -> Edges b -> Edges a Source #
($>) :: Edges a -> b -> Edges b Source #
void :: Edges a -> Edges () Source #
loeb :: Edges (a <-| Edges) -> Edges a Source #
(<&>) :: Edges a -> (a -> b) -> Edges b Source #
(<$$>) :: Covariant u => (a -> b) -> ((Edges :. u) := a) -> (Edges :. u) := b Source #
(<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Edges :. (u :. v)) := a) -> (Edges :. (u :. v)) := b Source #
(<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Edges :. (u :. (v :. w))) := a) -> (Edges :. (u :. (v :. w))) := b Source #
(<&&>) :: Covariant u => ((Edges :. u) := a) -> (a -> b) -> (Edges :. u) := b Source #
(<&&&>) :: (Covariant u, Covariant v) => ((Edges :. (u :. v)) := a) -> (a -> b) -> (Edges :. (u :. v)) := b Source #
(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Edges :. (u :. (v :. w))) := a) -> (a -> b) -> (Edges :. (u :. (v :. w))) := b Source #
Defined in Pandora.Paradigm.Structure.Specific.Graph
(<$>) :: (a -> b) -> Graph a -> Graph b Source #
comap :: (a -> b) -> Graph a -> Graph b Source #
(<$) :: a -> Graph b -> Graph a Source #
($>) :: Graph a -> b -> Graph b Source #
void :: Graph a -> Graph () Source #
loeb :: Graph (a <-| Graph) -> Graph a Source #
(<&>) :: Graph a -> (a -> b) -> Graph b Source #
(<$$>) :: Covariant u => (a -> b) -> ((Graph :. u) := a) -> (Graph :. u) := b Source #
(<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Graph :. (u :. v)) := a) -> (Graph :. (u :. v)) := b Source #
(<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Graph :. (u :. (v :. w))) := a) -> (Graph :. (u :. (v :. w))) := b Source #
(<&&>) :: Covariant u => ((Graph :. u) := a) -> (a -> b) -> (Graph :. u) := b Source #
(<&&&>) :: (Covariant u, Covariant v) => ((Graph :. (u :. v)) := a) -> (a -> b) -> (Graph :. (u :. v)) := b Source #
(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Graph :. (u :. (v :. w))) := a) -> (a -> b) -> (Graph :. (u :. (v :. w))) := b Source #
(->>) :: (Pointable u, Applicative u) => Edges a -> (a -> u b) -> (u :. Edges) := b Source #
traverse :: (Pointable u, Applicative u) => (a -> u b) -> Edges a -> (u :. Edges) := b Source #
sequence :: (Pointable u, Applicative u) => ((Edges :. u) := a) -> (u :. Edges) := a Source #
(->>>) :: (Pointable u, Applicative u, Traversable v) => ((v :. Edges) := a) -> (a -> u b) -> (u :. (v :. Edges)) := b Source #
(->>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w) => ((w :. (v :. Edges)) := a) -> (a -> u b) -> (u :. (w :. (v :. Edges))) := b Source #
(->>>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. Edges))) := a) -> (a -> u b) -> (u :. (j :. (w :. (v :. Edges)))) := b Source #
(->>) :: (Pointable u, Applicative u) => Graph a -> (a -> u b) -> (u :. Graph) := b Source #
traverse :: (Pointable u, Applicative u) => (a -> u b) -> Graph a -> (u :. Graph) := b Source #
sequence :: (Pointable u, Applicative u) => ((Graph :. u) := a) -> (u :. Graph) := a Source #
(->>>) :: (Pointable u, Applicative u, Traversable v) => ((v :. Graph) := a) -> (a -> u b) -> (u :. (v :. Graph)) := b Source #
(->>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w) => ((w :. (v :. Graph)) := a) -> (a -> u b) -> (u :. (w :. (v :. Graph))) := b Source #
(->>>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. Graph))) := a) -> (a -> u b) -> (u :. (j :. (w :. (v :. Graph)))) := b Source #
edges :: r -> (a -> r) -> (a -> r) -> Edges a -> r Source #