pandora-0.2.4: A box of patterns and paradigms

Safe HaskellSafe
LanguageHaskell2010

Pandora.Paradigm.Basis.Edges

Documentation

data Edges a Source #

Constructors

Empty 
Connect a 
Overlay a 
Instances
Covariant Edges Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Edges

Methods

(<$>) :: (a -> b) -> Edges a -> Edges b Source #

comap :: (a -> b) -> Edges a -> Edges b Source #

(<$) :: a -> Edges b -> Edges a Source #

($>) :: Edges a -> b -> Edges b Source #

void :: Edges a -> Edges () Source #

loeb :: Edges (a <-| Edges) -> Edges a Source #

(<&>) :: Edges a -> (a -> b) -> Edges b Source #

(<$$>) :: Covariant u => (a -> b) -> ((Edges :. u) := a) -> (Edges :. u) := b Source #

(<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Edges :. (u :. v)) := a) -> (Edges :. (u :. v)) := b Source #

(<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Edges :. (u :. (v :. w))) := a) -> (Edges :. (u :. (v :. w))) := b Source #

(<&&>) :: Covariant u => ((Edges :. u) := a) -> (a -> b) -> (Edges :. u) := b Source #

(<&&&>) :: (Covariant u, Covariant v) => ((Edges :. (u :. v)) := a) -> (a -> b) -> (Edges :. (u :. v)) := b Source #

(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Edges :. (u :. (v :. w))) := a) -> (a -> b) -> (Edges :. (u :. (v :. w))) := b Source #

Covariant Graph Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Specific.Graph

Methods

(<$>) :: (a -> b) -> Graph a -> Graph b Source #

comap :: (a -> b) -> Graph a -> Graph b Source #

(<$) :: a -> Graph b -> Graph a Source #

($>) :: Graph a -> b -> Graph b Source #

void :: Graph a -> Graph () Source #

loeb :: Graph (a <-| Graph) -> Graph a Source #

(<&>) :: Graph a -> (a -> b) -> Graph b Source #

(<$$>) :: Covariant u => (a -> b) -> ((Graph :. u) := a) -> (Graph :. u) := b Source #

(<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Graph :. (u :. v)) := a) -> (Graph :. (u :. v)) := b Source #

(<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Graph :. (u :. (v :. w))) := a) -> (Graph :. (u :. (v :. w))) := b Source #

(<&&>) :: Covariant u => ((Graph :. u) := a) -> (a -> b) -> (Graph :. u) := b Source #

(<&&&>) :: (Covariant u, Covariant v) => ((Graph :. (u :. v)) := a) -> (a -> b) -> (Graph :. (u :. v)) := b Source #

(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Graph :. (u :. (v :. w))) := a) -> (a -> b) -> (Graph :. (u :. (v :. w))) := b Source #

Traversable Edges Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Edges

Methods

(->>) :: (Pointable u, Applicative u) => Edges a -> (a -> u b) -> (u :. Edges) := b Source #

traverse :: (Pointable u, Applicative u) => (a -> u b) -> Edges a -> (u :. Edges) := b Source #

sequence :: (Pointable u, Applicative u) => ((Edges :. u) := a) -> (u :. Edges) := a Source #

(->>>) :: (Pointable u, Applicative u, Traversable v) => ((v :. Edges) := a) -> (a -> u b) -> (u :. (v :. Edges)) := b Source #

(->>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w) => ((w :. (v :. Edges)) := a) -> (a -> u b) -> (u :. (w :. (v :. Edges))) := b Source #

(->>>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. Edges))) := a) -> (a -> u b) -> (u :. (j :. (w :. (v :. Edges)))) := b Source #

Traversable Graph Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Specific.Graph

Methods

(->>) :: (Pointable u, Applicative u) => Graph a -> (a -> u b) -> (u :. Graph) := b Source #

traverse :: (Pointable u, Applicative u) => (a -> u b) -> Graph a -> (u :. Graph) := b Source #

sequence :: (Pointable u, Applicative u) => ((Graph :. u) := a) -> (u :. Graph) := a Source #

(->>>) :: (Pointable u, Applicative u, Traversable v) => ((v :. Graph) := a) -> (a -> u b) -> (u :. (v :. Graph)) := b Source #

(->>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w) => ((w :. (v :. Graph)) := a) -> (a -> u b) -> (u :. (w :. (v :. Graph))) := b Source #

(->>>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. Graph))) := a) -> (a -> u b) -> (u :. (j :. (w :. (v :. Graph)))) := b Source #

edges :: r -> (a -> r) -> (a -> r) -> Edges a -> r Source #