pandora-0.2.4: A box of patterns and paradigms

Safe HaskellSafe
LanguageHaskell2010

Pandora.Paradigm.Controlflow.Joint.Schemes.UT

Documentation

newtype UT ct cu t u a Source #

Constructors

UT ((u :. t) := a) 
Instances
Covariant Graph Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Specific.Graph

Methods

(<$>) :: (a -> b) -> Graph a -> Graph b Source #

comap :: (a -> b) -> Graph a -> Graph b Source #

(<$) :: a -> Graph b -> Graph a Source #

($>) :: Graph a -> b -> Graph b Source #

void :: Graph a -> Graph () Source #

loeb :: Graph (a <-| Graph) -> Graph a Source #

(<&>) :: Graph a -> (a -> b) -> Graph b Source #

(<$$>) :: Covariant u => (a -> b) -> ((Graph :. u) := a) -> (Graph :. u) := b Source #

(<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Graph :. (u :. v)) := a) -> (Graph :. (u :. v)) := b Source #

(<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Graph :. (u :. (v :. w))) := a) -> (Graph :. (u :. (v :. w))) := b Source #

(<&&>) :: Covariant u => ((Graph :. u) := a) -> (a -> b) -> (Graph :. u) := b Source #

(<&&&>) :: (Covariant u, Covariant v) => ((Graph :. (u :. v)) := a) -> (a -> b) -> (Graph :. (u :. v)) := b Source #

(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Graph :. (u :. (v :. w))) := a) -> (a -> b) -> (Graph :. (u :. (v :. w))) := b Source #

Covariant Stack Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Specific.Stack

Methods

(<$>) :: (a -> b) -> Stack a -> Stack b Source #

comap :: (a -> b) -> Stack a -> Stack b Source #

(<$) :: a -> Stack b -> Stack a Source #

($>) :: Stack a -> b -> Stack b Source #

void :: Stack a -> Stack () Source #

loeb :: Stack (a <-| Stack) -> Stack a Source #

(<&>) :: Stack a -> (a -> b) -> Stack b Source #

(<$$>) :: Covariant u => (a -> b) -> ((Stack :. u) := a) -> (Stack :. u) := b Source #

(<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Stack :. (u :. v)) := a) -> (Stack :. (u :. v)) := b Source #

(<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Stack :. (u :. (v :. w))) := a) -> (Stack :. (u :. (v :. w))) := b Source #

(<&&>) :: Covariant u => ((Stack :. u) := a) -> (a -> b) -> (Stack :. u) := b Source #

(<&&&>) :: (Covariant u, Covariant v) => ((Stack :. (u :. v)) := a) -> (a -> b) -> (Stack :. (u :. v)) := b Source #

(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Stack :. (u :. (v :. w))) := a) -> (a -> b) -> (Stack :. (u :. (v :. w))) := b Source #

Applicative Stack Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Specific.Stack

Methods

(<*>) :: Stack (a -> b) -> Stack a -> Stack b Source #

apply :: Stack (a -> b) -> Stack a -> Stack b Source #

(*>) :: Stack a -> Stack b -> Stack b Source #

(<*) :: Stack a -> Stack b -> Stack a Source #

forever :: Stack a -> Stack b Source #

(<**>) :: Applicative u => ((Stack :. u) := (a -> b)) -> ((Stack :. u) := a) -> (Stack :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Stack :. (u :. v)) := (a -> b)) -> ((Stack :. (u :. v)) := a) -> (Stack :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Stack :. (u :. (v :. w))) := (a -> b)) -> ((Stack :. (u :. (v :. w))) := a) -> (Stack :. (u :. (v :. w))) := b Source #

Alternative Stack Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Specific.Stack

Methods

(<+>) :: Stack a -> Stack a -> Stack a Source #

alter :: Stack a -> Stack a -> Stack a Source #

Avoidable Stack Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Specific.Stack

Methods

empty :: Stack a Source #

Pointable Stack Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Specific.Stack

Methods

point :: a |-> Stack Source #

Traversable Graph Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Specific.Graph

Methods

(->>) :: (Pointable u, Applicative u) => Graph a -> (a -> u b) -> (u :. Graph) := b Source #

traverse :: (Pointable u, Applicative u) => (a -> u b) -> Graph a -> (u :. Graph) := b Source #

sequence :: (Pointable u, Applicative u) => ((Graph :. u) := a) -> (u :. Graph) := a Source #

(->>>) :: (Pointable u, Applicative u, Traversable v) => ((v :. Graph) := a) -> (a -> u b) -> (u :. (v :. Graph)) := b Source #

(->>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w) => ((w :. (v :. Graph)) := a) -> (a -> u b) -> (u :. (w :. (v :. Graph))) := b Source #

(->>>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. Graph))) := a) -> (a -> u b) -> (u :. (j :. (w :. (v :. Graph)))) := b Source #

Traversable Stack Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Specific.Stack

Methods

(->>) :: (Pointable u, Applicative u) => Stack a -> (a -> u b) -> (u :. Stack) := b Source #

traverse :: (Pointable u, Applicative u) => (a -> u b) -> Stack a -> (u :. Stack) := b Source #

sequence :: (Pointable u, Applicative u) => ((Stack :. u) := a) -> (u :. Stack) := a Source #

(->>>) :: (Pointable u, Applicative u, Traversable v) => ((v :. Stack) := a) -> (a -> u b) -> (u :. (v :. Stack)) := b Source #

(->>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w) => ((w :. (v :. Stack)) := a) -> (a -> u b) -> (u :. (w :. (v :. Stack))) := b Source #

(->>>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. Stack))) := a) -> (a -> u b) -> (u :. (j :. (w :. (v :. Stack)))) := b Source #

Semigroup (Stack a) Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Specific.Stack

Methods

(+) :: Stack a -> Stack a -> Stack a Source #

Monoid (Stack a) Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Specific.Stack

Methods

zero :: Stack a Source #

Setoid a => Setoid (Stack a) Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Specific.Stack

Methods

(==) :: Stack a -> Stack a -> Boolean Source #

(/=) :: Stack a -> Stack a -> Boolean Source #

Interpreted (UT ct cu t u) Source # 
Instance details

Defined in Pandora.Paradigm.Controlflow.Joint.Schemes.UT

Associated Types

type Primary (UT ct cu t u) a :: Type Source #

Methods

run :: UT ct cu t u a -> Primary (UT ct cu t u) a Source #

Covariant u => Covariant (UT Covariant Covariant ((->) e :: Type -> Type) u) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Imprint

Methods

(<$>) :: (a -> b) -> UT Covariant Covariant ((->) e) u a -> UT Covariant Covariant ((->) e) u b Source #

comap :: (a -> b) -> UT Covariant Covariant ((->) e) u a -> UT Covariant Covariant ((->) e) u b Source #

(<$) :: a -> UT Covariant Covariant ((->) e) u b -> UT Covariant Covariant ((->) e) u a Source #

($>) :: UT Covariant Covariant ((->) e) u a -> b -> UT Covariant Covariant ((->) e) u b Source #

void :: UT Covariant Covariant ((->) e) u a -> UT Covariant Covariant ((->) e) u () Source #

loeb :: UT Covariant Covariant ((->) e) u (a <-| UT Covariant Covariant ((->) e) u) -> UT Covariant Covariant ((->) e) u a Source #

(<&>) :: UT Covariant Covariant ((->) e) u a -> (a -> b) -> UT Covariant Covariant ((->) e) u b Source #

(<$$>) :: Covariant u0 => (a -> b) -> ((UT Covariant Covariant ((->) e) u :. u0) := a) -> (UT Covariant Covariant ((->) e) u :. u0) := b Source #

(<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((UT Covariant Covariant ((->) e) u :. (u0 :. v)) := a) -> (UT Covariant Covariant ((->) e) u :. (u0 :. v)) := b Source #

(<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((UT Covariant Covariant ((->) e) u :. (u0 :. (v :. w))) := a) -> (UT Covariant Covariant ((->) e) u :. (u0 :. (v :. w))) := b Source #

(<&&>) :: Covariant u0 => ((UT Covariant Covariant ((->) e) u :. u0) := a) -> (a -> b) -> (UT Covariant Covariant ((->) e) u :. u0) := b Source #

(<&&&>) :: (Covariant u0, Covariant v) => ((UT Covariant Covariant ((->) e) u :. (u0 :. v)) := a) -> (a -> b) -> (UT Covariant Covariant ((->) e) u :. (u0 :. v)) := b Source #

(<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((UT Covariant Covariant ((->) e) u :. (u0 :. (v :. w))) := a) -> (a -> b) -> (UT Covariant Covariant ((->) e) u :. (u0 :. (v :. w))) := b Source #

Covariant u => Covariant (UT Covariant Covariant ((:*:) e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Accumulator

Methods

(<$>) :: (a -> b) -> UT Covariant Covariant ((:*:) e) u a -> UT Covariant Covariant ((:*:) e) u b Source #

comap :: (a -> b) -> UT Covariant Covariant ((:*:) e) u a -> UT Covariant Covariant ((:*:) e) u b Source #

(<$) :: a -> UT Covariant Covariant ((:*:) e) u b -> UT Covariant Covariant ((:*:) e) u a Source #

($>) :: UT Covariant Covariant ((:*:) e) u a -> b -> UT Covariant Covariant ((:*:) e) u b Source #

void :: UT Covariant Covariant ((:*:) e) u a -> UT Covariant Covariant ((:*:) e) u () Source #

loeb :: UT Covariant Covariant ((:*:) e) u (a <-| UT Covariant Covariant ((:*:) e) u) -> UT Covariant Covariant ((:*:) e) u a Source #

(<&>) :: UT Covariant Covariant ((:*:) e) u a -> (a -> b) -> UT Covariant Covariant ((:*:) e) u b Source #

(<$$>) :: Covariant u0 => (a -> b) -> ((UT Covariant Covariant ((:*:) e) u :. u0) := a) -> (UT Covariant Covariant ((:*:) e) u :. u0) := b Source #

(<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((UT Covariant Covariant ((:*:) e) u :. (u0 :. v)) := a) -> (UT Covariant Covariant ((:*:) e) u :. (u0 :. v)) := b Source #

(<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((UT Covariant Covariant ((:*:) e) u :. (u0 :. (v :. w))) := a) -> (UT Covariant Covariant ((:*:) e) u :. (u0 :. (v :. w))) := b Source #

(<&&>) :: Covariant u0 => ((UT Covariant Covariant ((:*:) e) u :. u0) := a) -> (a -> b) -> (UT Covariant Covariant ((:*:) e) u :. u0) := b Source #

(<&&&>) :: (Covariant u0, Covariant v) => ((UT Covariant Covariant ((:*:) e) u :. (u0 :. v)) := a) -> (a -> b) -> (UT Covariant Covariant ((:*:) e) u :. (u0 :. v)) := b Source #

(<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((UT Covariant Covariant ((:*:) e) u :. (u0 :. (v :. w))) := a) -> (a -> b) -> (UT Covariant Covariant ((:*:) e) u :. (u0 :. (v :. w))) := b Source #

Covariant u => Covariant (UT Covariant Covariant Maybe u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Maybe

Methods

(<$>) :: (a -> b) -> UT Covariant Covariant Maybe u a -> UT Covariant Covariant Maybe u b Source #

comap :: (a -> b) -> UT Covariant Covariant Maybe u a -> UT Covariant Covariant Maybe u b Source #

(<$) :: a -> UT Covariant Covariant Maybe u b -> UT Covariant Covariant Maybe u a Source #

($>) :: UT Covariant Covariant Maybe u a -> b -> UT Covariant Covariant Maybe u b Source #

void :: UT Covariant Covariant Maybe u a -> UT Covariant Covariant Maybe u () Source #

loeb :: UT Covariant Covariant Maybe u (a <-| UT Covariant Covariant Maybe u) -> UT Covariant Covariant Maybe u a Source #

(<&>) :: UT Covariant Covariant Maybe u a -> (a -> b) -> UT Covariant Covariant Maybe u b Source #

(<$$>) :: Covariant u0 => (a -> b) -> ((UT Covariant Covariant Maybe u :. u0) := a) -> (UT Covariant Covariant Maybe u :. u0) := b Source #

(<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((UT Covariant Covariant Maybe u :. (u0 :. v)) := a) -> (UT Covariant Covariant Maybe u :. (u0 :. v)) := b Source #

(<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((UT Covariant Covariant Maybe u :. (u0 :. (v :. w))) := a) -> (UT Covariant Covariant Maybe u :. (u0 :. (v :. w))) := b Source #

(<&&>) :: Covariant u0 => ((UT Covariant Covariant Maybe u :. u0) := a) -> (a -> b) -> (UT Covariant Covariant Maybe u :. u0) := b Source #

(<&&&>) :: (Covariant u0, Covariant v) => ((UT Covariant Covariant Maybe u :. (u0 :. v)) := a) -> (a -> b) -> (UT Covariant Covariant Maybe u :. (u0 :. v)) := b Source #

(<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((UT Covariant Covariant Maybe u :. (u0 :. (v :. w))) := a) -> (a -> b) -> (UT Covariant Covariant Maybe u :. (u0 :. (v :. w))) := b Source #

Covariant u => Covariant (UT Covariant Covariant (Conclusion e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Conclusion

Methods

(<$>) :: (a -> b) -> UT Covariant Covariant (Conclusion e) u a -> UT Covariant Covariant (Conclusion e) u b Source #

comap :: (a -> b) -> UT Covariant Covariant (Conclusion e) u a -> UT Covariant Covariant (Conclusion e) u b Source #

(<$) :: a -> UT Covariant Covariant (Conclusion e) u b -> UT Covariant Covariant (Conclusion e) u a Source #

($>) :: UT Covariant Covariant (Conclusion e) u a -> b -> UT Covariant Covariant (Conclusion e) u b Source #

void :: UT Covariant Covariant (Conclusion e) u a -> UT Covariant Covariant (Conclusion e) u () Source #

loeb :: UT Covariant Covariant (Conclusion e) u (a <-| UT Covariant Covariant (Conclusion e) u) -> UT Covariant Covariant (Conclusion e) u a Source #

(<&>) :: UT Covariant Covariant (Conclusion e) u a -> (a -> b) -> UT Covariant Covariant (Conclusion e) u b Source #

(<$$>) :: Covariant u0 => (a -> b) -> ((UT Covariant Covariant (Conclusion e) u :. u0) := a) -> (UT Covariant Covariant (Conclusion e) u :. u0) := b Source #

(<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((UT Covariant Covariant (Conclusion e) u :. (u0 :. v)) := a) -> (UT Covariant Covariant (Conclusion e) u :. (u0 :. v)) := b Source #

(<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((UT Covariant Covariant (Conclusion e) u :. (u0 :. (v :. w))) := a) -> (UT Covariant Covariant (Conclusion e) u :. (u0 :. (v :. w))) := b Source #

(<&&>) :: Covariant u0 => ((UT Covariant Covariant (Conclusion e) u :. u0) := a) -> (a -> b) -> (UT Covariant Covariant (Conclusion e) u :. u0) := b Source #

(<&&&>) :: (Covariant u0, Covariant v) => ((UT Covariant Covariant (Conclusion e) u :. (u0 :. v)) := a) -> (a -> b) -> (UT Covariant Covariant (Conclusion e) u :. (u0 :. v)) := b Source #

(<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((UT Covariant Covariant (Conclusion e) u :. (u0 :. (v :. w))) := a) -> (a -> b) -> (UT Covariant Covariant (Conclusion e) u :. (u0 :. (v :. w))) := b Source #

(Semigroup e, Pointable u, Bindable u) => Bindable (UT Covariant Covariant ((:*:) e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Accumulator

(Pointable u, Bindable u) => Bindable (UT Covariant Covariant Maybe u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Maybe

(Pointable u, Bindable u) => Bindable (UT Covariant Covariant (Conclusion e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Conclusion

Applicative u => Applicative (UT Covariant Covariant ((->) e :: Type -> Type) u) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Imprint

Methods

(<*>) :: UT Covariant Covariant ((->) e) u (a -> b) -> UT Covariant Covariant ((->) e) u a -> UT Covariant Covariant ((->) e) u b Source #

apply :: UT Covariant Covariant ((->) e) u (a -> b) -> UT Covariant Covariant ((->) e) u a -> UT Covariant Covariant ((->) e) u b Source #

(*>) :: UT Covariant Covariant ((->) e) u a -> UT Covariant Covariant ((->) e) u b -> UT Covariant Covariant ((->) e) u b Source #

(<*) :: UT Covariant Covariant ((->) e) u a -> UT Covariant Covariant ((->) e) u b -> UT Covariant Covariant ((->) e) u a Source #

forever :: UT Covariant Covariant ((->) e) u a -> UT Covariant Covariant ((->) e) u b Source #

(<**>) :: Applicative u0 => ((UT Covariant Covariant ((->) e) u :. u0) := (a -> b)) -> ((UT Covariant Covariant ((->) e) u :. u0) := a) -> (UT Covariant Covariant ((->) e) u :. u0) := b Source #

(<***>) :: (Applicative u0, Applicative v) => ((UT Covariant Covariant ((->) e) u :. (u0 :. v)) := (a -> b)) -> ((UT Covariant Covariant ((->) e) u :. (u0 :. v)) := a) -> (UT Covariant Covariant ((->) e) u :. (u0 :. v)) := b Source #

(<****>) :: (Applicative u0, Applicative v, Applicative w) => ((UT Covariant Covariant ((->) e) u :. (u0 :. (v :. w))) := (a -> b)) -> ((UT Covariant Covariant ((->) e) u :. (u0 :. (v :. w))) := a) -> (UT Covariant Covariant ((->) e) u :. (u0 :. (v :. w))) := b Source #

(Semigroup e, Applicative u) => Applicative (UT Covariant Covariant ((:*:) e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Accumulator

Methods

(<*>) :: UT Covariant Covariant ((:*:) e) u (a -> b) -> UT Covariant Covariant ((:*:) e) u a -> UT Covariant Covariant ((:*:) e) u b Source #

apply :: UT Covariant Covariant ((:*:) e) u (a -> b) -> UT Covariant Covariant ((:*:) e) u a -> UT Covariant Covariant ((:*:) e) u b Source #

(*>) :: UT Covariant Covariant ((:*:) e) u a -> UT Covariant Covariant ((:*:) e) u b -> UT Covariant Covariant ((:*:) e) u b Source #

(<*) :: UT Covariant Covariant ((:*:) e) u a -> UT Covariant Covariant ((:*:) e) u b -> UT Covariant Covariant ((:*:) e) u a Source #

forever :: UT Covariant Covariant ((:*:) e) u a -> UT Covariant Covariant ((:*:) e) u b Source #

(<**>) :: Applicative u0 => ((UT Covariant Covariant ((:*:) e) u :. u0) := (a -> b)) -> ((UT Covariant Covariant ((:*:) e) u :. u0) := a) -> (UT Covariant Covariant ((:*:) e) u :. u0) := b Source #

(<***>) :: (Applicative u0, Applicative v) => ((UT Covariant Covariant ((:*:) e) u :. (u0 :. v)) := (a -> b)) -> ((UT Covariant Covariant ((:*:) e) u :. (u0 :. v)) := a) -> (UT Covariant Covariant ((:*:) e) u :. (u0 :. v)) := b Source #

(<****>) :: (Applicative u0, Applicative v, Applicative w) => ((UT Covariant Covariant ((:*:) e) u :. (u0 :. (v :. w))) := (a -> b)) -> ((UT Covariant Covariant ((:*:) e) u :. (u0 :. (v :. w))) := a) -> (UT Covariant Covariant ((:*:) e) u :. (u0 :. (v :. w))) := b Source #

Applicative u => Applicative (UT Covariant Covariant Maybe u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Maybe

Applicative u => Applicative (UT Covariant Covariant (Conclusion e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Conclusion

(Semigroup e, Extendable u) => Extendable (UT Covariant Covariant ((->) e :: Type -> Type) u) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Imprint

Methods

(=>>) :: UT Covariant Covariant ((->) e) u a -> (UT Covariant Covariant ((->) e) u a -> b) -> UT Covariant Covariant ((->) e) u b Source #

(<<=) :: (UT Covariant Covariant ((->) e) u a -> b) -> UT Covariant Covariant ((->) e) u a -> UT Covariant Covariant ((->) e) u b Source #

extend :: (UT Covariant Covariant ((->) e) u a -> b) -> UT Covariant Covariant ((->) e) u a -> UT Covariant Covariant ((->) e) u b Source #

duplicate :: UT Covariant Covariant ((->) e) u a -> (UT Covariant Covariant ((->) e) u :. UT Covariant Covariant ((->) e) u) := a Source #

(=<=) :: (UT Covariant Covariant ((->) e) u b -> c) -> (UT Covariant Covariant ((->) e) u a -> b) -> UT Covariant Covariant ((->) e) u a -> c Source #

(=>=) :: (UT Covariant Covariant ((->) e) u a -> b) -> (UT Covariant Covariant ((->) e) u b -> c) -> UT Covariant Covariant ((->) e) u a -> c Source #

(Pointable u, Monoid e) => Pointable (UT Covariant Covariant ((:*:) e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Accumulator

Pointable u => Pointable (UT Covariant Covariant Maybe u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Maybe

Pointable u => Pointable (UT Covariant Covariant (Conclusion e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Conclusion

Monad u => Monad (UT Covariant Covariant Maybe u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Maybe

Monad u => Monad (UT Covariant Covariant (Conclusion e) u) Source # 
Instance details

Defined in Pandora.Paradigm.Basis.Conclusion

(Monoid e, Extractable u) => Extractable (UT Covariant Covariant ((->) e :: Type -> Type) u) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Imprint

Methods

extract :: a <-| UT Covariant Covariant ((->) e) u Source #

type Primary (UT ct cu t u) a Source # 
Instance details

Defined in Pandora.Paradigm.Controlflow.Joint.Schemes.UT

type Primary (UT ct cu t u) a = (u :. t) := a