Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Documentation
class Interpreted t => Monadic t where Source #
Instances
Monadic Maybe Source # | |
Monadic (Conclusion e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion lay :: Covariant u => u ~> (Conclusion e :> u) Source # wrap :: Pointable u => Conclusion e ~> (Conclusion e :> u) Source # | |
Monoid e => Monadic (Accumulator e) Source # | |
Defined in Pandora.Paradigm.Inventory.Accumulator lay :: Covariant u => u ~> (Accumulator e :> u) Source # wrap :: Pointable u => Accumulator e ~> (Accumulator e :> u) Source # | |
Monadic (State s) Source # | |
Monadic (Environment e) Source # | |
Defined in Pandora.Paradigm.Inventory.Environment lay :: Covariant u => u ~> (Environment e :> u) Source # wrap :: Pointable u => Environment e ~> (Environment e :> u) Source # |
newtype (t :> u) a infixr 3 Source #
Instances
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h)))))))), Layable t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> (f :> h))))))), Layable u (Schematic Monad v (w :> (x :> (y :> (z :> (f :> h)))))), Layable v (Schematic Monad w (x :> (y :> (z :> (f :> h))))), Layable w (Schematic Monad x (y :> (z :> (f :> h)))), Layable x (Schematic Monad y (z :> (f :> h))), Layable y (Schematic Monad z (f :> h)), Layable z (Schematic Monad f h), Wrappable f h) => Adaptable (f :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h))))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h)))))))), Layable t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> (f :> h))))))), Layable u (Schematic Monad v (w :> (x :> (y :> (z :> (f :> h)))))), Layable v (Schematic Monad w (x :> (y :> (z :> (f :> h))))), Layable w (Schematic Monad x (y :> (z :> (f :> h)))), Layable x (Schematic Monad y (z :> (f :> h))), Layable y (Schematic Monad z (f :> h)), Layable z (Schematic Monad f h), Layable f h) => Adaptable (h :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h))))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> f))))))), Layable t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> f)))))), Layable u (Schematic Monad v (w :> (x :> (y :> (z :> f))))), Layable v (Schematic Monad w (x :> (y :> (z :> f)))), Layable w (Schematic Monad x (y :> (z :> f))), Layable x (Schematic Monad y (z :> f)), Layable y (Schematic Monad z f), Wrappable z f) => Adaptable (z :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> f)))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> f))))))), Layable t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> f)))))), Layable u (Schematic Monad v (w :> (x :> (y :> (z :> f))))), Layable v (Schematic Monad w (x :> (y :> (z :> f)))), Layable w (Schematic Monad x (y :> (z :> f))), Layable x (Schematic Monad y (z :> f)), Layable y (Schematic Monad z f), Layable z f) => Adaptable (f :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> f)))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> z)))))), Layable t (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Layable u (Schematic Monad v (w :> (x :> (y :> z)))), Layable v (Schematic Monad w (x :> (y :> z))), Layable w (Schematic Monad x (y :> z)), Layable x (Schematic Monad y z), Wrappable y z) => Adaptable (y :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> z))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> z)))))), Layable t (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Layable u (Schematic Monad v (w :> (x :> (y :> z)))), Layable v (Schematic Monad w (x :> (y :> z))), Layable w (Schematic Monad x (y :> z)), Layable x (Schematic Monad y z), Layable y z) => Adaptable (z :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> z))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> y))))), Layable t (Schematic Monad u (v :> (w :> (x :> y)))), Layable u (Schematic Monad v (w :> (x :> y))), Layable v (Schematic Monad w (x :> y)), Layable w (Schematic Monad x y), Wrappable x y) => Adaptable (x :: Type -> Type) (t :> (u :> (v :> (w :> (x :> y)))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> y))))), Layable t (Schematic Monad u (v :> (w :> (x :> y)))), Layable u (Schematic Monad v (w :> (x :> y))), Layable v (Schematic Monad w (x :> y)), Layable w (Schematic Monad x y), Layable x y) => Adaptable (y :: Type -> Type) (t :> (u :> (v :> (w :> (x :> y)))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> x)))), Layable t (Schematic Monad u (v :> (w :> x))), Layable u (Schematic Monad v (w :> x)), Layable v (Schematic Monad w x), Wrappable w x) => Adaptable (w :: Type -> Type) (t :> (u :> (v :> (w :> x))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> x)))), Layable t (Schematic Monad u (v :> (w :> x))), Layable u (Schematic Monad v (w :> x)), Layable v (Schematic Monad w x), Layable w x) => Adaptable (x :: Type -> Type) (t :> (u :> (v :> (w :> x))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> w))), Layable t (Schematic Monad u v), Layable t (Schematic Monad u (v :> w)), Layable u (Schematic Monad v w), Layable v w) => Adaptable (w :: Type -> Type) (t :> (u :> (v :> w)) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> w))), Layable t (Schematic Monad u (v :> w)), Layable u (Schematic Monad v w), Wrappable v w) => Adaptable (v :: Type -> Type) (t :> (u :> (v :> w)) :: Type -> Type) Source # | |
(Covariant (t :> (u :> v)), Layable t (Schematic Monad u v), Layable u v) => Adaptable (v :: Type -> Type) (t :> (u :> v) :: Type -> Type) Source # | |
(Covariant (t :> (u :> v)), Layable t (Schematic Monad u v), Wrappable u v) => Adaptable (u :: Type -> Type) (t :> (u :> v) :: Type -> Type) Source # | |
(Covariant (t :> u), Wrappable t u) => Adaptable (t :: Type -> Type) (t :> u :: Type -> Type) Source # | |
(Covariant (t :> u), Layable t u) => Adaptable (u :: Type -> Type) (t :> u :: Type -> Type) Source # | |
Interpreted (Schematic Monad t u) => Interpreted (t :> u) Source # | |
Covariant (Schematic Monad t u) => Covariant (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Joint.Transformer.Monadic (<$>) :: (a -> b) -> (t :> u) a -> (t :> u) b Source # comap :: (a -> b) -> (t :> u) a -> (t :> u) b Source # (<$) :: a -> (t :> u) b -> (t :> u) a Source # ($>) :: (t :> u) a -> b -> (t :> u) b Source # void :: (t :> u) a -> (t :> u) () Source # loeb :: (t :> u) (a <-| (t :> u)) -> (t :> u) a Source # (<&>) :: (t :> u) a -> (a -> b) -> (t :> u) b Source # (<$$>) :: Covariant u0 => (a -> b) -> (((t :> u) :. u0) := a) -> ((t :> u) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> (((t :> u) :. (u0 :. v)) := a) -> ((t :> u) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> (((t :> u) :. (u0 :. (v :. w))) := a) -> ((t :> u) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => (((t :> u) :. u0) := a) -> (a -> b) -> ((t :> u) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => (((t :> u) :. (u0 :. v)) := a) -> (a -> b) -> ((t :> u) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => (((t :> u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> ((t :> u) :. (u0 :. (v :. w))) := b Source # | |
Bindable (Schematic Monad t u) => Bindable (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Joint.Transformer.Monadic (>>=) :: (t :> u) a -> (a -> (t :> u) b) -> (t :> u) b Source # (=<<) :: (a -> (t :> u) b) -> (t :> u) a -> (t :> u) b Source # bind :: (a -> (t :> u) b) -> (t :> u) a -> (t :> u) b Source # join :: (((t :> u) :. (t :> u)) := a) -> (t :> u) a Source # (>=>) :: (a -> (t :> u) b) -> (b -> (t :> u) c) -> a -> (t :> u) c Source # (<=<) :: (b -> (t :> u) c) -> (a -> (t :> u) b) -> a -> (t :> u) c Source # | |
Applicative (Schematic Monad t u) => Applicative (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Joint.Transformer.Monadic (<*>) :: (t :> u) (a -> b) -> (t :> u) a -> (t :> u) b Source # apply :: (t :> u) (a -> b) -> (t :> u) a -> (t :> u) b Source # (*>) :: (t :> u) a -> (t :> u) b -> (t :> u) b Source # (<*) :: (t :> u) a -> (t :> u) b -> (t :> u) a Source # forever :: (t :> u) a -> (t :> u) b Source # (<**>) :: Applicative u0 => (((t :> u) :. u0) := (a -> b)) -> (((t :> u) :. u0) := a) -> ((t :> u) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => (((t :> u) :. (u0 :. v)) := (a -> b)) -> (((t :> u) :. (u0 :. v)) := a) -> ((t :> u) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => (((t :> u) :. (u0 :. (v :. w))) := (a -> b)) -> (((t :> u) :. (u0 :. (v :. w))) := a) -> ((t :> u) :. (u0 :. (v :. w))) := b Source # | |
Alternative (Schematic Monad t u) => Alternative (t :> u) Source # | |
Distributive (Schematic Monad t u) => Distributive (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Joint.Transformer.Monadic (>>-) :: Covariant u0 => u0 a -> (a -> (t :> u) b) -> ((t :> u) :. u0) := b Source # collect :: Covariant u0 => (a -> (t :> u) b) -> u0 a -> ((t :> u) :. u0) := b Source # distribute :: Covariant u0 => ((u0 :. (t :> u)) := a) -> ((t :> u) :. u0) := a Source # (>>>-) :: (Covariant u0, Covariant v) => ((u0 :. v) := a) -> (a -> (t :> u) b) -> ((t :> u) :. (u0 :. v)) := b Source # (>>>>-) :: (Covariant u0, Covariant v, Covariant w) => ((u0 :. (v :. w)) := a) -> (a -> (t :> u) b) -> ((t :> u) :. (u0 :. (v :. w))) := b Source # (>>>>>-) :: (Covariant u0, Covariant v, Covariant w, Covariant j) => ((u0 :. (v :. (w :. j))) := a) -> (a -> (t :> u) b) -> ((t :> u) :. (u0 :. (v :. (w :. j)))) := b Source # | |
Extendable (Schematic Monad t u) => Extendable (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Joint.Transformer.Monadic (=>>) :: (t :> u) a -> ((t :> u) a -> b) -> (t :> u) b Source # (<<=) :: ((t :> u) a -> b) -> (t :> u) a -> (t :> u) b Source # extend :: ((t :> u) a -> b) -> (t :> u) a -> (t :> u) b Source # duplicate :: (t :> u) a -> ((t :> u) :. (t :> u)) := a Source # (=<=) :: ((t :> u) b -> c) -> ((t :> u) a -> b) -> (t :> u) a -> c Source # (=>=) :: ((t :> u) a -> b) -> ((t :> u) b -> c) -> (t :> u) a -> c Source # | |
Pointable (Schematic Monad t u) => Pointable (t :> u) Source # | |
(Pointable (t :> u), Bindable (t :> u)) => Monad (t :> u) Source # | |
Traversable (Schematic Monad t u) => Traversable (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Joint.Transformer.Monadic (->>) :: (Pointable u0, Applicative u0) => (t :> u) a -> (a -> u0 b) -> (u0 :. (t :> u)) := b Source # traverse :: (Pointable u0, Applicative u0) => (a -> u0 b) -> (t :> u) a -> (u0 :. (t :> u)) := b Source # sequence :: (Pointable u0, Applicative u0) => (((t :> u) :. u0) := a) -> (u0 :. (t :> u)) := a Source # (->>>) :: (Pointable u0, Applicative u0, Traversable v) => ((v :. (t :> u)) := a) -> (a -> u0 b) -> (u0 :. (v :. (t :> u))) := b Source # (->>>>) :: (Pointable u0, Applicative u0, Traversable v, Traversable w) => ((w :. (v :. (t :> u))) := a) -> (a -> u0 b) -> (u0 :. (w :. (v :. (t :> u)))) := b Source # (->>>>>) :: (Pointable u0, Applicative u0, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. (t :> u)))) := a) -> (a -> u0 b) -> (u0 :. (j :. (w :. (v :. (t :> u))))) := b Source # | |
Extractable (Schematic Monad t u) => Extractable (t :> u) Source # | |
type Primary (t :> u) a Source # | |