Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Documentation
class Interpreted t => Comonadic t where Source #
newtype (t :< u) a infixr 3 Source #
Instances
(Covariant (t :< (u :< (v :< (w :< (x :< (y :< (z :< (f :< h)))))))), Flickable t (Schematic Comonad u (v :< (w :< (x :< (y :< (z :< (f :< h))))))), Flickable u (Schematic Comonad v (w :< (x :< (y :< (z :< (f :< h)))))), Flickable v (Schematic Comonad w (x :< (y :< (z :< (f :< h))))), Flickable w (Schematic Comonad x (y :< (z :< (f :< h)))), Flickable x (Schematic Comonad y (z :< (f :< h))), Flickable y (Schematic Comonad z (f :< h)), Flickable z (Schematic Comonad f h), Bringable f h) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< (z :< (f :< h))))))) :: Type -> Type) (f :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< (y :< (z :< (f :< h)))))))), Flickable t (Schematic Comonad u (v :< (w :< (x :< (y :< (z :< (f :< h))))))), Flickable u (Schematic Comonad v (w :< (x :< (y :< (z :< (f :< h)))))), Flickable v (Schematic Comonad w (x :< (y :< (z :< (f :< h))))), Flickable w (Schematic Comonad x (y :< (z :< (f :< h)))), Flickable x (Schematic Comonad y (z :< (f :< h))), Flickable y (Schematic Comonad z (f :< h)), Flickable z (Schematic Comonad f h), Flickable f h) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< (z :< (f :< h))))))) :: Type -> Type) (h :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< (y :< (z :< f))))))), Flickable t (Schematic Comonad u (v :< (w :< (x :< (y :< (z :< f)))))), Flickable u (Schematic Comonad v (w :< (x :< (y :< (z :< f))))), Flickable v (Schematic Comonad w (x :< (y :< (z :< f)))), Flickable w (Schematic Comonad x (y :< (z :< f))), Flickable x (Schematic Comonad y (z :< f)), Flickable y (Schematic Comonad z f), Bringable z f) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< (z :< f)))))) :: Type -> Type) (z :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< (y :< (z :< f))))))), Flickable t (Schematic Comonad u (v :< (w :< (x :< (y :< (z :< f)))))), Flickable u (Schematic Comonad v (w :< (x :< (y :< (z :< f))))), Flickable v (Schematic Comonad w (x :< (y :< (z :< f)))), Flickable w (Schematic Comonad x (y :< (z :< f))), Flickable x (Schematic Comonad y (z :< f)), Flickable y (Schematic Comonad z f), Flickable z f) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< (z :< f)))))) :: Type -> Type) (f :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< (y :< z)))))), Flickable t (Schematic Comonad u (v :< (w :< (x :< (y :< z))))), Flickable u (Schematic Comonad v (w :< (x :< (y :< z)))), Flickable v (Schematic Comonad w (x :< (y :< z))), Flickable w (Schematic Comonad x (y :< z)), Flickable x (Schematic Comonad y z), Bringable y z) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< z))))) :: Type -> Type) (y :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< (y :< z)))))), Flickable t (Schematic Comonad u (v :< (w :< (x :< (y :< z))))), Flickable u (Schematic Comonad v (w :< (x :< (y :< z)))), Flickable v (Schematic Comonad w (x :< (y :< z))), Flickable w (Schematic Comonad x (y :< z)), Flickable x (Schematic Comonad y z), Flickable y z) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< z))))) :: Type -> Type) (z :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< y))))), Flickable t (Schematic Comonad u (v :< (w :< (x :< y)))), Flickable u (Schematic Comonad v (w :< (x :< y))), Flickable v (Schematic Comonad w (x :< y)), Flickable w (Schematic Comonad x y), Bringable x y) => Adaptable (t :< (u :< (v :< (w :< (x :< y)))) :: Type -> Type) (x :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< y))))), Flickable t (Schematic Comonad u (v :< (w :< (x :< y)))), Flickable u (Schematic Comonad v (w :< (x :< y))), Flickable v (Schematic Comonad w (x :< y)), Flickable w (Schematic Comonad x y), Flickable x y) => Adaptable (t :< (u :< (v :< (w :< (x :< y)))) :: Type -> Type) (y :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< x)))), Flickable t (Schematic Comonad u (v :< (w :< x))), Flickable u (Schematic Comonad v (w :< x)), Flickable v (Schematic Comonad w x), Bringable w x) => Adaptable (t :< (u :< (v :< (w :< x))) :: Type -> Type) (w :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< x)))), Flickable t (Schematic Comonad u (v :< (w :< x))), Flickable u (Schematic Comonad v (w :< x)), Flickable v (Schematic Comonad w x), Flickable w x) => Adaptable (t :< (u :< (v :< (w :< x))) :: Type -> Type) (x :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< w))), Flickable t (Schematic Comonad u v), Flickable t (Schematic Comonad u (v :< w)), Flickable u (Schematic Comonad v w), Flickable v w) => Adaptable (t :< (u :< (v :< w)) :: Type -> Type) (w :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< w))), Flickable t (Schematic Comonad u (v :< w)), Flickable u (Schematic Comonad v w), Bringable v w) => Adaptable (t :< (u :< (v :< w)) :: Type -> Type) (v :: Type -> Type) Source # | |
(Covariant (t :< (u :< v)), Flickable t (Schematic Comonad u v), Flickable u v) => Adaptable (t :< (u :< v) :: Type -> Type) (v :: Type -> Type) Source # | |
(Covariant (t :< (u :< v)), Flickable t (Schematic Comonad u v), Bringable u v) => Adaptable (t :< (u :< v) :: Type -> Type) (u :: Type -> Type) Source # | |
(Covariant (t :< u), Bringable t u) => Adaptable (t :< u :: Type -> Type) (t :: Type -> Type) Source # | |
(Covariant (t :> u), Flickable t u) => Adaptable (t :< u :: Type -> Type) (u :: Type -> Type) Source # | |
Interpreted (Schematic Comonad t u) => Interpreted (t :< u) Source # | |
Covariant (Schematic Comonad t u) => Covariant (t :< u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Joint.Transformer.Comonadic (<$>) :: (a -> b) -> (t :< u) a -> (t :< u) b Source # comap :: (a -> b) -> (t :< u) a -> (t :< u) b Source # (<$) :: a -> (t :< u) b -> (t :< u) a Source # ($>) :: (t :< u) a -> b -> (t :< u) b Source # void :: (t :< u) a -> (t :< u) () Source # loeb :: (t :< u) (a <-| (t :< u)) -> (t :< u) a Source # (<&>) :: (t :< u) a -> (a -> b) -> (t :< u) b Source # (<$$>) :: Covariant u0 => (a -> b) -> (((t :< u) :. u0) := a) -> ((t :< u) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> (((t :< u) :. (u0 :. v)) := a) -> ((t :< u) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> (((t :< u) :. (u0 :. (v :. w))) := a) -> ((t :< u) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => (((t :< u) :. u0) := a) -> (a -> b) -> ((t :< u) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => (((t :< u) :. (u0 :. v)) := a) -> (a -> b) -> ((t :< u) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => (((t :< u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> ((t :< u) :. (u0 :. (v :. w))) := b Source # | |
Bindable (Schematic Comonad t u) => Bindable (t :< u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Joint.Transformer.Comonadic (>>=) :: (t :< u) a -> (a -> (t :< u) b) -> (t :< u) b Source # (=<<) :: (a -> (t :< u) b) -> (t :< u) a -> (t :< u) b Source # bind :: (a -> (t :< u) b) -> (t :< u) a -> (t :< u) b Source # join :: (((t :< u) :. (t :< u)) := a) -> (t :< u) a Source # (>=>) :: (a -> (t :< u) b) -> (b -> (t :< u) c) -> a -> (t :< u) c Source # (<=<) :: (b -> (t :< u) c) -> (a -> (t :< u) b) -> a -> (t :< u) c Source # ($>>=) :: Covariant u0 => (a -> (t :< u) b) -> ((u0 :. (t :< u)) := a) -> (u0 :. (t :< u)) := b Source # (>>=$) :: ((t :< u) b -> c) -> (a -> (t :< u) b) -> (t :< u) a -> c Source # | |
Applicative (Schematic Comonad t u) => Applicative (t :< u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Joint.Transformer.Comonadic (<*>) :: (t :< u) (a -> b) -> (t :< u) a -> (t :< u) b Source # apply :: (t :< u) (a -> b) -> (t :< u) a -> (t :< u) b Source # (*>) :: (t :< u) a -> (t :< u) b -> (t :< u) b Source # (<*) :: (t :< u) a -> (t :< u) b -> (t :< u) a Source # forever :: (t :< u) a -> (t :< u) b Source # (<**>) :: Applicative u0 => (((t :< u) :. u0) := (a -> b)) -> (((t :< u) :. u0) := a) -> ((t :< u) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => (((t :< u) :. (u0 :. v)) := (a -> b)) -> (((t :< u) :. (u0 :. v)) := a) -> ((t :< u) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => (((t :< u) :. (u0 :. (v :. w))) := (a -> b)) -> (((t :< u) :. (u0 :. (v :. w))) := a) -> ((t :< u) :. (u0 :. (v :. w))) := b Source # | |
Alternative (Schematic Comonad t u) => Alternative (t :< u) Source # | |
Distributive (Schematic Comonad t u) => Distributive (t :< u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Joint.Transformer.Comonadic (>>-) :: Covariant u0 => u0 a -> (a -> (t :< u) b) -> ((t :< u) :. u0) := b Source # collect :: Covariant u0 => (a -> (t :< u) b) -> u0 a -> ((t :< u) :. u0) := b Source # distribute :: Covariant u0 => ((u0 :. (t :< u)) := a) -> ((t :< u) :. u0) := a Source # (>>>-) :: (Covariant u0, Covariant v) => ((u0 :. v) := a) -> (a -> (t :< u) b) -> ((t :< u) :. (u0 :. v)) := b Source # (>>>>-) :: (Covariant u0, Covariant v, Covariant w) => ((u0 :. (v :. w)) := a) -> (a -> (t :< u) b) -> ((t :< u) :. (u0 :. (v :. w))) := b Source # (>>>>>-) :: (Covariant u0, Covariant v, Covariant w, Covariant j) => ((u0 :. (v :. (w :. j))) := a) -> (a -> (t :< u) b) -> ((t :< u) :. (u0 :. (v :. (w :. j)))) := b Source # | |
Extendable (Schematic Comonad t u) => Extendable (t :< u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Joint.Transformer.Comonadic (=>>) :: (t :< u) a -> ((t :< u) a -> b) -> (t :< u) b Source # (<<=) :: ((t :< u) a -> b) -> (t :< u) a -> (t :< u) b Source # extend :: ((t :< u) a -> b) -> (t :< u) a -> (t :< u) b Source # duplicate :: (t :< u) a -> ((t :< u) :. (t :< u)) := a Source # (=<=) :: ((t :< u) b -> c) -> ((t :< u) a -> b) -> (t :< u) a -> c Source # (=>=) :: ((t :< u) a -> b) -> ((t :< u) b -> c) -> (t :< u) a -> c Source # | |
Pointable (Schematic Comonad t u) => Pointable (t :< u) Source # | |
Traversable (Schematic Comonad t u) => Traversable (t :< u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Joint.Transformer.Comonadic (->>) :: (Pointable u0, Applicative u0) => (t :< u) a -> (a -> u0 b) -> (u0 :. (t :< u)) := b Source # traverse :: (Pointable u0, Applicative u0) => (a -> u0 b) -> (t :< u) a -> (u0 :. (t :< u)) := b Source # sequence :: (Pointable u0, Applicative u0) => (((t :< u) :. u0) := a) -> (u0 :. (t :< u)) := a Source # (->>>) :: (Pointable u0, Applicative u0, Traversable v) => ((v :. (t :< u)) := a) -> (a -> u0 b) -> (u0 :. (v :. (t :< u))) := b Source # (->>>>) :: (Pointable u0, Applicative u0, Traversable v, Traversable w) => ((w :. (v :. (t :< u))) := a) -> (a -> u0 b) -> (u0 :. (w :. (v :. (t :< u)))) := b Source # (->>>>>) :: (Pointable u0, Applicative u0, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. (t :< u)))) := a) -> (a -> u0 b) -> (u0 :. (j :. (w :. (v :. (t :< u))))) := b Source # | |
Extractable (Schematic Comonad t u) => Extractable (t :< u) Source # | |
(Extractable (t :< u), Extendable (t :< u)) => Comonad (t :< u) Source # | |
type Primary (t :< u) a Source # | |