Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Documentation
Instances
Interpreted (State s) Source # | |
Covariant (State s) Source # | |
Defined in Pandora.Paradigm.Inventory.State (<$>) :: (a -> b) -> State s a -> State s b Source # comap :: (a -> b) -> State s a -> State s b Source # (<$) :: a -> State s b -> State s a Source # ($>) :: State s a -> b -> State s b Source # void :: State s a -> State s () Source # loeb :: State s (a <-| State s) -> State s a Source # (<&>) :: State s a -> (a -> b) -> State s b Source # (<$$>) :: Covariant u => (a -> b) -> ((State s :. u) := a) -> (State s :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((State s :. (u :. v)) := a) -> (State s :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((State s :. (u :. (v :. w))) := a) -> (State s :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((State s :. u) := a) -> (a -> b) -> (State s :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((State s :. (u :. v)) := a) -> (a -> b) -> (State s :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((State s :. (u :. (v :. w))) := a) -> (a -> b) -> (State s :. (u :. (v :. w))) := b Source # | |
Bindable (State s) Source # | |
Defined in Pandora.Paradigm.Inventory.State (>>=) :: State s a -> (a -> State s b) -> State s b Source # (=<<) :: (a -> State s b) -> State s a -> State s b Source # bind :: (a -> State s b) -> State s a -> State s b Source # join :: ((State s :. State s) := a) -> State s a Source # (>=>) :: (a -> State s b) -> (b -> State s c) -> a -> State s c Source # (<=<) :: (b -> State s c) -> (a -> State s b) -> a -> State s c Source # ($>>=) :: Covariant u => (a -> State s b) -> ((u :. State s) := a) -> (u :. State s) := b Source # (>>=$) :: (State s b -> c) -> (a -> State s b) -> State s a -> c Source # | |
Applicative (State s) Source # | |
Defined in Pandora.Paradigm.Inventory.State (<*>) :: State s (a -> b) -> State s a -> State s b Source # apply :: State s (a -> b) -> State s a -> State s b Source # (*>) :: State s a -> State s b -> State s b Source # (<*) :: State s a -> State s b -> State s a Source # forever :: State s a -> State s b Source # (<**>) :: Applicative u => ((State s :. u) := (a -> b)) -> ((State s :. u) := a) -> (State s :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => ((State s :. (u :. v)) := (a -> b)) -> ((State s :. (u :. v)) := a) -> (State s :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => ((State s :. (u :. (v :. w))) := (a -> b)) -> ((State s :. (u :. (v :. w))) := a) -> (State s :. (u :. (v :. w))) := b Source # | |
Pointable (State s) Source # | |
Monad (State s) Source # | |
Defined in Pandora.Paradigm.Inventory.State | |
Monadic (State s) Source # | |
Adjoint (Store s) (State s) Source # | |
type Schematic Monad (State s) u Source # | |
type Primary (State s) a Source # | |
fold :: Traversable t => s -> (a -> s -> s) -> t a -> s Source #
find :: (Pointable u, Avoidable u, Alternative u, Traversable t) => Predicate a -> t a -> u a Source #
Orphan instances
Covariant u => Covariant ((((->) s :: Type -> Type) <:<.>:> (:*:) s) := u) Source # | |
(<$>) :: (a -> b) -> (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b Source # comap :: (a -> b) -> (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b Source # (<$) :: a -> (((->) s <:<.>:> (:*:) s) := u) b -> (((->) s <:<.>:> (:*:) s) := u) a Source # ($>) :: (((->) s <:<.>:> (:*:) s) := u) a -> b -> (((->) s <:<.>:> (:*:) s) := u) b Source # void :: (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) () Source # loeb :: (((->) s <:<.>:> (:*:) s) := u) (a <-| (((->) s <:<.>:> (:*:) s) := u)) -> (((->) s <:<.>:> (:*:) s) := u) a Source # (<&>) :: (((->) s <:<.>:> (:*:) s) := u) a -> (a -> b) -> (((->) s <:<.>:> (:*:) s) := u) b Source # (<$$>) :: Covariant u0 => (a -> b) -> (((((->) s <:<.>:> (:*:) s) := u) :. u0) := a) -> ((((->) s <:<.>:> (:*:) s) := u) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. v)) := a) -> ((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. (v :. w))) := a) -> ((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => (((((->) s <:<.>:> (:*:) s) := u) :. u0) := a) -> (a -> b) -> ((((->) s <:<.>:> (:*:) s) := u) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. v)) := a) -> (a -> b) -> ((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> ((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. (v :. w))) := b Source # | |
Bindable u => Bindable ((((->) s :: Type -> Type) <:<.>:> (:*:) s) := u) Source # | |
(>>=) :: (((->) s <:<.>:> (:*:) s) := u) a -> (a -> (((->) s <:<.>:> (:*:) s) := u) b) -> (((->) s <:<.>:> (:*:) s) := u) b Source # (=<<) :: (a -> (((->) s <:<.>:> (:*:) s) := u) b) -> (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b Source # bind :: (a -> (((->) s <:<.>:> (:*:) s) := u) b) -> (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b Source # join :: (((((->) s <:<.>:> (:*:) s) := u) :. (((->) s <:<.>:> (:*:) s) := u)) := a) -> (((->) s <:<.>:> (:*:) s) := u) a Source # (>=>) :: (a -> (((->) s <:<.>:> (:*:) s) := u) b) -> (b -> (((->) s <:<.>:> (:*:) s) := u) c) -> a -> (((->) s <:<.>:> (:*:) s) := u) c Source # (<=<) :: (b -> (((->) s <:<.>:> (:*:) s) := u) c) -> (a -> (((->) s <:<.>:> (:*:) s) := u) b) -> a -> (((->) s <:<.>:> (:*:) s) := u) c Source # ($>>=) :: Covariant u0 => (a -> (((->) s <:<.>:> (:*:) s) := u) b) -> ((u0 :. (((->) s <:<.>:> (:*:) s) := u)) := a) -> (u0 :. (((->) s <:<.>:> (:*:) s) := u)) := b Source # (>>=$) :: ((((->) s <:<.>:> (:*:) s) := u) b -> c) -> (a -> (((->) s <:<.>:> (:*:) s) := u) b) -> (((->) s <:<.>:> (:*:) s) := u) a -> c Source # | |
Bindable u => Applicative ((((->) s :: Type -> Type) <:<.>:> (:*:) s) := u) Source # | |
(<*>) :: (((->) s <:<.>:> (:*:) s) := u) (a -> b) -> (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b Source # apply :: (((->) s <:<.>:> (:*:) s) := u) (a -> b) -> (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b Source # (*>) :: (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b -> (((->) s <:<.>:> (:*:) s) := u) b Source # (<*) :: (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b -> (((->) s <:<.>:> (:*:) s) := u) a Source # forever :: (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b Source # (<**>) :: Applicative u0 => (((((->) s <:<.>:> (:*:) s) := u) :. u0) := (a -> b)) -> (((((->) s <:<.>:> (:*:) s) := u) :. u0) := a) -> ((((->) s <:<.>:> (:*:) s) := u) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. v)) := (a -> b)) -> (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. v)) := a) -> ((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. (v :. w))) := (a -> b)) -> (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. (v :. w))) := a) -> ((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. (v :. w))) := b Source # | |
Pointable u => Pointable ((((->) s :: Type -> Type) <:<.>:> (:*:) s) := u) Source # | |
Monad u => Monad ((((->) s :: Type -> Type) <:<.>:> (:*:) s) := u) Source # | |