Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Pandora.Pattern.Functor.Covariant
Synopsis
- class Covariant (t :: * -> *) where
- (<$>) :: (a -> b) -> t a -> t b
- comap :: (a -> b) -> t a -> t b
- (<$) :: a -> t b -> t a
- ($>) :: t a -> b -> t b
- void :: t a -> t ()
- loeb :: t (a <-| t) -> t a
- (<&>) :: t a -> (a -> b) -> t b
- (<$$>) :: Covariant u => (a -> b) -> ((t :. u) := a) -> (t :. u) := b
- (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((t :. (u :. v)) := a) -> (t :. (u :. v)) := b
- (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((t :. (u :. (v :. w))) := a) -> (t :. (u :. (v :. w))) := b
- (<&&>) :: Covariant u => ((t :. u) := a) -> (a -> b) -> (t :. u) := b
- (<&&&>) :: (Covariant u, Covariant v) => ((t :. (u :. v)) := a) -> (a -> b) -> (t :. (u :. v)) := b
- (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((t :. (u :. (v :. w))) := a) -> (a -> b) -> (t :. (u :. (v :. w))) := b
- (.|..) :: (Category v, Covariant (v a)) => v c d -> ((v a :. v b) := c) -> (v a :. v b) := d
- (.|...) :: (Category v, Covariant (v a), Covariant (v b)) => v d e -> ((v a :. (v b :. v c)) := d) -> (v a :. (v b :. v c)) := e
- (.|....) :: (Category v, Covariant (v a), Covariant (v b), Covariant (v c)) => v e f -> ((v a :. (v b :. (v c :. v d))) := e) -> (v a :. (v b :. (v c :. v d))) := f
Documentation
class Covariant (t :: * -> *) where Source #
When providing a new instance, you should ensure it satisfies the two laws: * Identity morphism: comap identity ≡ identity * Interpreted of morphisms: comap (f . g) ≡ comap f . comap g
Minimal complete definition
Methods
(<$>) :: (a -> b) -> t a -> t b infixl 4 Source #
Infix version of comap
comap :: (a -> b) -> t a -> t b Source #
Prefix version of <$>
(<$) :: a -> t b -> t a infixl 4 Source #
Replace all locations in the input with the same value
($>) :: t a -> b -> t b infixl 4 Source #
Flipped version of <$
Discards the result of evaluation
loeb :: t (a <-| t) -> t a Source #
Computing a value from a structure of values
(<&>) :: t a -> (a -> b) -> t b Source #
Flipped infix version of comap
(<$$>) :: Covariant u => (a -> b) -> ((t :. u) := a) -> (t :. u) := b Source #
Infix versions of comap
with various nesting levels
(<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((t :. (u :. v)) := a) -> (t :. (u :. v)) := b Source #
(<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((t :. (u :. (v :. w))) := a) -> (t :. (u :. (v :. w))) := b Source #
(<&&>) :: Covariant u => ((t :. u) := a) -> (a -> b) -> (t :. u) := b Source #
Infix flipped versions of comap
with various nesting levels
(<&&&>) :: (Covariant u, Covariant v) => ((t :. (u :. v)) := a) -> (a -> b) -> (t :. (u :. v)) := b Source #
(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((t :. (u :. (v :. w))) := a) -> (a -> b) -> (t :. (u :. (v :. w))) := b Source #
Instances
Insertable Stack Source # | |
(forall a. Chain a) => Insertable Binary Source # | |
Covariant Wye Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Wye Methods (<$>) :: (a -> b) -> Wye a -> Wye b Source # comap :: (a -> b) -> Wye a -> Wye b Source # (<$) :: a -> Wye b -> Wye a Source # ($>) :: Wye a -> b -> Wye b Source # void :: Wye a -> Wye () Source # loeb :: Wye (a <-| Wye) -> Wye a Source # (<&>) :: Wye a -> (a -> b) -> Wye b Source # (<$$>) :: Covariant u => (a -> b) -> ((Wye :. u) := a) -> (Wye :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Wye :. (u :. v)) := a) -> (Wye :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Wye :. (u :. (v :. w))) := a) -> (Wye :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Wye :. u) := a) -> (a -> b) -> (Wye :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Wye :. (u :. v)) := a) -> (a -> b) -> (Wye :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Wye :. (u :. (v :. w))) := a) -> (a -> b) -> (Wye :. (u :. (v :. w))) := b Source # | |
Covariant Edges Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Edges Methods (<$>) :: (a -> b) -> Edges a -> Edges b Source # comap :: (a -> b) -> Edges a -> Edges b Source # (<$) :: a -> Edges b -> Edges a Source # ($>) :: Edges a -> b -> Edges b Source # void :: Edges a -> Edges () Source # loeb :: Edges (a <-| Edges) -> Edges a Source # (<&>) :: Edges a -> (a -> b) -> Edges b Source # (<$$>) :: Covariant u => (a -> b) -> ((Edges :. u) := a) -> (Edges :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Edges :. (u :. v)) := a) -> (Edges :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Edges :. (u :. (v :. w))) := a) -> (Edges :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Edges :. u) := a) -> (a -> b) -> (Edges :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Edges :. (u :. v)) := a) -> (a -> b) -> (Edges :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Edges :. (u :. (v :. w))) := a) -> (a -> b) -> (Edges :. (u :. (v :. w))) := b Source # | |
Covariant Identity Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Identity Methods (<$>) :: (a -> b) -> Identity a -> Identity b Source # comap :: (a -> b) -> Identity a -> Identity b Source # (<$) :: a -> Identity b -> Identity a Source # ($>) :: Identity a -> b -> Identity b Source # void :: Identity a -> Identity () Source # loeb :: Identity (a <-| Identity) -> Identity a Source # (<&>) :: Identity a -> (a -> b) -> Identity b Source # (<$$>) :: Covariant u => (a -> b) -> ((Identity :. u) := a) -> (Identity :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Identity :. (u :. v)) := a) -> (Identity :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Identity :. (u :. (v :. w))) := a) -> (Identity :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Identity :. u) := a) -> (a -> b) -> (Identity :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Identity :. (u :. v)) := a) -> (a -> b) -> (Identity :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Identity :. (u :. (v :. w))) := a) -> (a -> b) -> (Identity :. (u :. (v :. w))) := b Source # | |
Covariant Delta Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Delta Methods (<$>) :: (a -> b) -> Delta a -> Delta b Source # comap :: (a -> b) -> Delta a -> Delta b Source # (<$) :: a -> Delta b -> Delta a Source # ($>) :: Delta a -> b -> Delta b Source # void :: Delta a -> Delta () Source # loeb :: Delta (a <-| Delta) -> Delta a Source # (<&>) :: Delta a -> (a -> b) -> Delta b Source # (<$$>) :: Covariant u => (a -> b) -> ((Delta :. u) := a) -> (Delta :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Delta :. (u :. v)) := a) -> (Delta :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Delta :. (u :. (v :. w))) := a) -> (Delta :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Delta :. u) := a) -> (a -> b) -> (Delta :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Delta :. (u :. v)) := a) -> (a -> b) -> (Delta :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Delta :. (u :. (v :. w))) := a) -> (a -> b) -> (Delta :. (u :. (v :. w))) := b Source # | |
Covariant Maybe Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Maybe Methods (<$>) :: (a -> b) -> Maybe a -> Maybe b Source # comap :: (a -> b) -> Maybe a -> Maybe b Source # (<$) :: a -> Maybe b -> Maybe a Source # ($>) :: Maybe a -> b -> Maybe b Source # void :: Maybe a -> Maybe () Source # loeb :: Maybe (a <-| Maybe) -> Maybe a Source # (<&>) :: Maybe a -> (a -> b) -> Maybe b Source # (<$$>) :: Covariant u => (a -> b) -> ((Maybe :. u) := a) -> (Maybe :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Maybe :. (u :. v)) := a) -> (Maybe :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Maybe :. (u :. (v :. w))) := a) -> (Maybe :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Maybe :. u) := a) -> (a -> b) -> (Maybe :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Maybe :. (u :. v)) := a) -> (a -> b) -> (Maybe :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Maybe :. (u :. (v :. w))) := a) -> (a -> b) -> (Maybe :. (u :. (v :. w))) := b Source # | |
Covariant (Proxy :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Proxy Methods (<$>) :: (a -> b) -> Proxy a -> Proxy b Source # comap :: (a -> b) -> Proxy a -> Proxy b Source # (<$) :: a -> Proxy b -> Proxy a Source # ($>) :: Proxy a -> b -> Proxy b Source # void :: Proxy a -> Proxy () Source # loeb :: Proxy (a <-| Proxy) -> Proxy a Source # (<&>) :: Proxy a -> (a -> b) -> Proxy b Source # (<$$>) :: Covariant u => (a -> b) -> ((Proxy :. u) := a) -> (Proxy :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Proxy :. (u :. v)) := a) -> (Proxy :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Proxy :. (u :. (v :. w))) := a) -> (Proxy :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Proxy :. u) := a) -> (a -> b) -> (Proxy :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Proxy :. (u :. v)) := a) -> (a -> b) -> (Proxy :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Proxy :. (u :. (v :. w))) := a) -> (a -> b) -> (Proxy :. (u :. (v :. w))) := b Source # | |
Covariant (Wedge e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Wedge Methods (<$>) :: (a -> b) -> Wedge e a -> Wedge e b Source # comap :: (a -> b) -> Wedge e a -> Wedge e b Source # (<$) :: a -> Wedge e b -> Wedge e a Source # ($>) :: Wedge e a -> b -> Wedge e b Source # void :: Wedge e a -> Wedge e () Source # loeb :: Wedge e (a <-| Wedge e) -> Wedge e a Source # (<&>) :: Wedge e a -> (a -> b) -> Wedge e b Source # (<$$>) :: Covariant u => (a -> b) -> ((Wedge e :. u) := a) -> (Wedge e :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Wedge e :. (u :. v)) := a) -> (Wedge e :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Wedge e :. (u :. (v :. w))) := a) -> (Wedge e :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Wedge e :. u) := a) -> (a -> b) -> (Wedge e :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Wedge e :. (u :. v)) := a) -> (a -> b) -> (Wedge e :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Wedge e :. (u :. (v :. w))) := a) -> (a -> b) -> (Wedge e :. (u :. (v :. w))) := b Source # | |
Covariant (These e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.These Methods (<$>) :: (a -> b) -> These e a -> These e b Source # comap :: (a -> b) -> These e a -> These e b Source # (<$) :: a -> These e b -> These e a Source # ($>) :: These e a -> b -> These e b Source # void :: These e a -> These e () Source # loeb :: These e (a <-| These e) -> These e a Source # (<&>) :: These e a -> (a -> b) -> These e b Source # (<$$>) :: Covariant u => (a -> b) -> ((These e :. u) := a) -> (These e :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((These e :. (u :. v)) := a) -> (These e :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((These e :. (u :. (v :. w))) := a) -> (These e :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((These e :. u) := a) -> (a -> b) -> (These e :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((These e :. (u :. v)) := a) -> (a -> b) -> (These e :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((These e :. (u :. (v :. w))) := a) -> (a -> b) -> (These e :. (u :. (v :. w))) := b Source # | |
Covariant t => Covariant (Jet t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Jet Methods (<$>) :: (a -> b) -> Jet t a -> Jet t b Source # comap :: (a -> b) -> Jet t a -> Jet t b Source # (<$) :: a -> Jet t b -> Jet t a Source # ($>) :: Jet t a -> b -> Jet t b Source # void :: Jet t a -> Jet t () Source # loeb :: Jet t (a <-| Jet t) -> Jet t a Source # (<&>) :: Jet t a -> (a -> b) -> Jet t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Jet t :. u) := a) -> (Jet t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Jet t :. (u :. v)) := a) -> (Jet t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Jet t :. (u :. (v :. w))) := a) -> (Jet t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Jet t :. u) := a) -> (a -> b) -> (Jet t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Jet t :. (u :. v)) := a) -> (a -> b) -> (Jet t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Jet t :. (u :. (v :. w))) := a) -> (a -> b) -> (Jet t :. (u :. (v :. w))) := b Source # | |
Covariant (Validation e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Validation Methods (<$>) :: (a -> b) -> Validation e a -> Validation e b Source # comap :: (a -> b) -> Validation e a -> Validation e b Source # (<$) :: a -> Validation e b -> Validation e a Source # ($>) :: Validation e a -> b -> Validation e b Source # void :: Validation e a -> Validation e () Source # loeb :: Validation e (a <-| Validation e) -> Validation e a Source # (<&>) :: Validation e a -> (a -> b) -> Validation e b Source # (<$$>) :: Covariant u => (a -> b) -> ((Validation e :. u) := a) -> (Validation e :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Validation e :. (u :. v)) := a) -> (Validation e :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Validation e :. (u :. (v :. w))) := a) -> (Validation e :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Validation e :. u) := a) -> (a -> b) -> (Validation e :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Validation e :. (u :. v)) := a) -> (a -> b) -> (Validation e :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Validation e :. (u :. (v :. w))) := a) -> (a -> b) -> (Validation e :. (u :. (v :. w))) := b Source # | |
Covariant (Product a) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Product Methods (<$>) :: (a0 -> b) -> Product a a0 -> Product a b Source # comap :: (a0 -> b) -> Product a a0 -> Product a b Source # (<$) :: a0 -> Product a b -> Product a a0 Source # ($>) :: Product a a0 -> b -> Product a b Source # void :: Product a a0 -> Product a () Source # loeb :: Product a (a0 <-| Product a) -> Product a a0 Source # (<&>) :: Product a a0 -> (a0 -> b) -> Product a b Source # (<$$>) :: Covariant u => (a0 -> b) -> ((Product a :. u) := a0) -> (Product a :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a0 -> b) -> ((Product a :. (u :. v)) := a0) -> (Product a :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a0 -> b) -> ((Product a :. (u :. (v :. w))) := a0) -> (Product a :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Product a :. u) := a0) -> (a0 -> b) -> (Product a :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Product a :. (u :. v)) := a0) -> (a0 -> b) -> (Product a :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Product a :. (u :. (v :. w))) := a0) -> (a0 -> b) -> (Product a :. (u :. (v :. w))) := b Source # | |
Covariant (Yoneda t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Yoneda Methods (<$>) :: (a -> b) -> Yoneda t a -> Yoneda t b Source # comap :: (a -> b) -> Yoneda t a -> Yoneda t b Source # (<$) :: a -> Yoneda t b -> Yoneda t a Source # ($>) :: Yoneda t a -> b -> Yoneda t b Source # void :: Yoneda t a -> Yoneda t () Source # loeb :: Yoneda t (a <-| Yoneda t) -> Yoneda t a Source # (<&>) :: Yoneda t a -> (a -> b) -> Yoneda t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Yoneda t :. u) := a) -> (Yoneda t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Yoneda t :. (u :. v)) := a) -> (Yoneda t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Yoneda t :. (u :. (v :. w))) := a) -> (Yoneda t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Yoneda t :. u) := a) -> (a -> b) -> (Yoneda t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Yoneda t :. (u :. v)) := a) -> (a -> b) -> (Yoneda t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Yoneda t :. (u :. (v :. w))) := a) -> (a -> b) -> (Yoneda t :. (u :. (v :. w))) := b Source # | |
Covariant (Outline t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Outline Methods (<$>) :: (a -> b) -> Outline t a -> Outline t b Source # comap :: (a -> b) -> Outline t a -> Outline t b Source # (<$) :: a -> Outline t b -> Outline t a Source # ($>) :: Outline t a -> b -> Outline t b Source # void :: Outline t a -> Outline t () Source # loeb :: Outline t (a <-| Outline t) -> Outline t a Source # (<&>) :: Outline t a -> (a -> b) -> Outline t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Outline t :. u) := a) -> (Outline t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Outline t :. (u :. v)) := a) -> (Outline t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Outline t :. (u :. (v :. w))) := a) -> (Outline t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Outline t :. u) := a) -> (a -> b) -> (Outline t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Outline t :. (u :. v)) := a) -> (a -> b) -> (Outline t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Outline t :. (u :. (v :. w))) := a) -> (a -> b) -> (Outline t :. (u :. (v :. w))) := b Source # | |
Covariant t => Covariant (Jack t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Jack Methods (<$>) :: (a -> b) -> Jack t a -> Jack t b Source # comap :: (a -> b) -> Jack t a -> Jack t b Source # (<$) :: a -> Jack t b -> Jack t a Source # ($>) :: Jack t a -> b -> Jack t b Source # void :: Jack t a -> Jack t () Source # loeb :: Jack t (a <-| Jack t) -> Jack t a Source # (<&>) :: Jack t a -> (a -> b) -> Jack t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Jack t :. u) := a) -> (Jack t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Jack t :. (u :. v)) := a) -> (Jack t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Jack t :. (u :. (v :. w))) := a) -> (Jack t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Jack t :. u) := a) -> (a -> b) -> (Jack t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Jack t :. (u :. v)) := a) -> (a -> b) -> (Jack t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Jack t :. (u :. (v :. w))) := a) -> (a -> b) -> (Jack t :. (u :. (v :. w))) := b Source # | |
Covariant t => Covariant (Instruction t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Instruction Methods (<$>) :: (a -> b) -> Instruction t a -> Instruction t b Source # comap :: (a -> b) -> Instruction t a -> Instruction t b Source # (<$) :: a -> Instruction t b -> Instruction t a Source # ($>) :: Instruction t a -> b -> Instruction t b Source # void :: Instruction t a -> Instruction t () Source # loeb :: Instruction t (a <-| Instruction t) -> Instruction t a Source # (<&>) :: Instruction t a -> (a -> b) -> Instruction t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Instruction t :. u) := a) -> (Instruction t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Instruction t :. (u :. v)) := a) -> (Instruction t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Instruction t :. (u :. (v :. w))) := a) -> (Instruction t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Instruction t :. u) := a) -> (a -> b) -> (Instruction t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Instruction t :. (u :. v)) := a) -> (a -> b) -> (Instruction t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Instruction t :. (u :. (v :. w))) := a) -> (a -> b) -> (Instruction t :. (u :. (v :. w))) := b Source # | |
Covariant (Conclusion e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion Methods (<$>) :: (a -> b) -> Conclusion e a -> Conclusion e b Source # comap :: (a -> b) -> Conclusion e a -> Conclusion e b Source # (<$) :: a -> Conclusion e b -> Conclusion e a Source # ($>) :: Conclusion e a -> b -> Conclusion e b Source # void :: Conclusion e a -> Conclusion e () Source # loeb :: Conclusion e (a <-| Conclusion e) -> Conclusion e a Source # (<&>) :: Conclusion e a -> (a -> b) -> Conclusion e b Source # (<$$>) :: Covariant u => (a -> b) -> ((Conclusion e :. u) := a) -> (Conclusion e :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Conclusion e :. (u :. v)) := a) -> (Conclusion e :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Conclusion e :. (u :. (v :. w))) := a) -> (Conclusion e :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Conclusion e :. u) := a) -> (a -> b) -> (Conclusion e :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Conclusion e :. (u :. v)) := a) -> (a -> b) -> (Conclusion e :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Conclusion e :. (u :. (v :. w))) := a) -> (a -> b) -> (Conclusion e :. (u :. (v :. w))) := b Source # | |
Covariant (Imprint e) Source # | |
Defined in Pandora.Paradigm.Inventory.Imprint Methods (<$>) :: (a -> b) -> Imprint e a -> Imprint e b Source # comap :: (a -> b) -> Imprint e a -> Imprint e b Source # (<$) :: a -> Imprint e b -> Imprint e a Source # ($>) :: Imprint e a -> b -> Imprint e b Source # void :: Imprint e a -> Imprint e () Source # loeb :: Imprint e (a <-| Imprint e) -> Imprint e a Source # (<&>) :: Imprint e a -> (a -> b) -> Imprint e b Source # (<$$>) :: Covariant u => (a -> b) -> ((Imprint e :. u) := a) -> (Imprint e :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Imprint e :. (u :. v)) := a) -> (Imprint e :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Imprint e :. (u :. (v :. w))) := a) -> (Imprint e :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Imprint e :. u) := a) -> (a -> b) -> (Imprint e :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Imprint e :. (u :. v)) := a) -> (a -> b) -> (Imprint e :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Imprint e :. (u :. (v :. w))) := a) -> (a -> b) -> (Imprint e :. (u :. (v :. w))) := b Source # | |
Covariant (Accumulator e) Source # | |
Defined in Pandora.Paradigm.Inventory.Accumulator Methods (<$>) :: (a -> b) -> Accumulator e a -> Accumulator e b Source # comap :: (a -> b) -> Accumulator e a -> Accumulator e b Source # (<$) :: a -> Accumulator e b -> Accumulator e a Source # ($>) :: Accumulator e a -> b -> Accumulator e b Source # void :: Accumulator e a -> Accumulator e () Source # loeb :: Accumulator e (a <-| Accumulator e) -> Accumulator e a Source # (<&>) :: Accumulator e a -> (a -> b) -> Accumulator e b Source # (<$$>) :: Covariant u => (a -> b) -> ((Accumulator e :. u) := a) -> (Accumulator e :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Accumulator e :. (u :. v)) := a) -> (Accumulator e :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Accumulator e :. (u :. (v :. w))) := a) -> (Accumulator e :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Accumulator e :. u) := a) -> (a -> b) -> (Accumulator e :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Accumulator e :. (u :. v)) := a) -> (a -> b) -> (Accumulator e :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Accumulator e :. (u :. (v :. w))) := a) -> (a -> b) -> (Accumulator e :. (u :. (v :. w))) := b Source # | |
Covariant (Store p) Source # | |
Defined in Pandora.Paradigm.Inventory.Store Methods (<$>) :: (a -> b) -> Store p a -> Store p b Source # comap :: (a -> b) -> Store p a -> Store p b Source # (<$) :: a -> Store p b -> Store p a Source # ($>) :: Store p a -> b -> Store p b Source # void :: Store p a -> Store p () Source # loeb :: Store p (a <-| Store p) -> Store p a Source # (<&>) :: Store p a -> (a -> b) -> Store p b Source # (<$$>) :: Covariant u => (a -> b) -> ((Store p :. u) := a) -> (Store p :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Store p :. (u :. v)) := a) -> (Store p :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Store p :. (u :. (v :. w))) := a) -> (Store p :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Store p :. u) := a) -> (a -> b) -> (Store p :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Store p :. (u :. v)) := a) -> (a -> b) -> (Store p :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Store p :. (u :. (v :. w))) := a) -> (a -> b) -> (Store p :. (u :. (v :. w))) := b Source # | |
Covariant (State s) Source # | |
Defined in Pandora.Paradigm.Inventory.State Methods (<$>) :: (a -> b) -> State s a -> State s b Source # comap :: (a -> b) -> State s a -> State s b Source # (<$) :: a -> State s b -> State s a Source # ($>) :: State s a -> b -> State s b Source # void :: State s a -> State s () Source # loeb :: State s (a <-| State s) -> State s a Source # (<&>) :: State s a -> (a -> b) -> State s b Source # (<$$>) :: Covariant u => (a -> b) -> ((State s :. u) := a) -> (State s :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((State s :. (u :. v)) := a) -> (State s :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((State s :. (u :. (v :. w))) := a) -> (State s :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((State s :. u) := a) -> (a -> b) -> (State s :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((State s :. (u :. v)) := a) -> (a -> b) -> (State s :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((State s :. (u :. (v :. w))) := a) -> (a -> b) -> (State s :. (u :. (v :. w))) := b Source # | |
Covariant (Equipment e) Source # | |
Defined in Pandora.Paradigm.Inventory.Equipment Methods (<$>) :: (a -> b) -> Equipment e a -> Equipment e b Source # comap :: (a -> b) -> Equipment e a -> Equipment e b Source # (<$) :: a -> Equipment e b -> Equipment e a Source # ($>) :: Equipment e a -> b -> Equipment e b Source # void :: Equipment e a -> Equipment e () Source # loeb :: Equipment e (a <-| Equipment e) -> Equipment e a Source # (<&>) :: Equipment e a -> (a -> b) -> Equipment e b Source # (<$$>) :: Covariant u => (a -> b) -> ((Equipment e :. u) := a) -> (Equipment e :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Equipment e :. (u :. v)) := a) -> (Equipment e :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Equipment e :. (u :. (v :. w))) := a) -> (Equipment e :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Equipment e :. u) := a) -> (a -> b) -> (Equipment e :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Equipment e :. (u :. v)) := a) -> (a -> b) -> (Equipment e :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Equipment e :. (u :. (v :. w))) := a) -> (a -> b) -> (Equipment e :. (u :. (v :. w))) := b Source # | |
Covariant (Environment e) Source # | |
Defined in Pandora.Paradigm.Inventory.Environment Methods (<$>) :: (a -> b) -> Environment e a -> Environment e b Source # comap :: (a -> b) -> Environment e a -> Environment e b Source # (<$) :: a -> Environment e b -> Environment e a Source # ($>) :: Environment e a -> b -> Environment e b Source # void :: Environment e a -> Environment e () Source # loeb :: Environment e (a <-| Environment e) -> Environment e a Source # (<&>) :: Environment e a -> (a -> b) -> Environment e b Source # (<$$>) :: Covariant u => (a -> b) -> ((Environment e :. u) := a) -> (Environment e :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Environment e :. (u :. v)) := a) -> (Environment e :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Environment e :. (u :. (v :. w))) := a) -> (Environment e :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Environment e :. u) := a) -> (a -> b) -> (Environment e :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Environment e :. (u :. v)) := a) -> (a -> b) -> (Environment e :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Environment e :. (u :. (v :. w))) := a) -> (a -> b) -> (Environment e :. (u :. (v :. w))) := b Source # | |
Covariant t => Covariant (Tap t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Tap Methods (<$>) :: (a -> b) -> Tap t a -> Tap t b Source # comap :: (a -> b) -> Tap t a -> Tap t b Source # (<$) :: a -> Tap t b -> Tap t a Source # ($>) :: Tap t a -> b -> Tap t b Source # void :: Tap t a -> Tap t () Source # loeb :: Tap t (a <-| Tap t) -> Tap t a Source # (<&>) :: Tap t a -> (a -> b) -> Tap t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Tap t :. u) := a) -> (Tap t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Tap t :. (u :. v)) := a) -> (Tap t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Tap t :. (u :. (v :. w))) := a) -> (Tap t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Tap t :. u) := a) -> (a -> b) -> (Tap t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Tap t :. (u :. v)) := a) -> (a -> b) -> (Tap t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Tap t :. (u :. (v :. w))) := a) -> (a -> b) -> (Tap t :. (u :. (v :. w))) := b Source # | |
Covariant t => Covariant (Construction t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Construction Methods (<$>) :: (a -> b) -> Construction t a -> Construction t b Source # comap :: (a -> b) -> Construction t a -> Construction t b Source # (<$) :: a -> Construction t b -> Construction t a Source # ($>) :: Construction t a -> b -> Construction t b Source # void :: Construction t a -> Construction t () Source # loeb :: Construction t (a <-| Construction t) -> Construction t a Source # (<&>) :: Construction t a -> (a -> b) -> Construction t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Construction t :. u) := a) -> (Construction t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Construction t :. (u :. v)) := a) -> (Construction t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Construction t :. (u :. (v :. w))) := a) -> (Construction t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Construction t :. u) := a) -> (a -> b) -> (Construction t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Construction t :. (u :. v)) := a) -> (a -> b) -> (Construction t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Construction t :. (u :. (v :. w))) := a) -> (a -> b) -> (Construction t :. (u :. (v :. w))) := b Source # | |
Covariant (t <:.> Construction t) => Covariant (Comprehension t) Source # | |
Defined in Pandora.Paradigm.Structure.Ability.Comprehension Methods (<$>) :: (a -> b) -> Comprehension t a -> Comprehension t b Source # comap :: (a -> b) -> Comprehension t a -> Comprehension t b Source # (<$) :: a -> Comprehension t b -> Comprehension t a Source # ($>) :: Comprehension t a -> b -> Comprehension t b Source # void :: Comprehension t a -> Comprehension t () Source # loeb :: Comprehension t (a <-| Comprehension t) -> Comprehension t a Source # (<&>) :: Comprehension t a -> (a -> b) -> Comprehension t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Comprehension t :. u) := a) -> (Comprehension t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Comprehension t :. (u :. v)) := a) -> (Comprehension t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Comprehension t :. (u :. (v :. w))) := a) -> (Comprehension t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Comprehension t :. u) := a) -> (a -> b) -> (Comprehension t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Comprehension t :. (u :. v)) := a) -> (a -> b) -> (Comprehension t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Comprehension t :. (u :. (v :. w))) := a) -> (a -> b) -> (Comprehension t :. (u :. (v :. w))) := b Source # | |
Semigroup (Stack a) Source # | |
Monoid (Stack a) Source # | |
Defined in Pandora.Paradigm.Structure.Stack | |
Setoid a => Setoid (Stack a) Source # | |
Substructure (Left :: Type -> Wye Type) Binary Source # | |
Defined in Pandora.Paradigm.Structure.Binary Associated Types type Substructural Left Binary a :: Type Source # Methods substructure :: Tagged Left (Binary a) :-. Substructural Left Binary a Source # | |
Substructure (Right :: Type -> Wye Type) Binary Source # | |
Defined in Pandora.Paradigm.Structure.Binary Associated Types type Substructural Right Binary a :: Type Source # Methods substructure :: Tagged Right (Binary a) :-. Substructural Right Binary a Source # | |
Substructure (Just :: Type -> Maybe Type) Rose Source # | |
Defined in Pandora.Paradigm.Structure.Rose Associated Types type Substructural Just Rose a :: Type Source # Methods substructure :: Tagged Just (Rose a) :-. Substructural Just Rose a Source # | |
Focusable (Root :: Type -> Location Type) Rose Source # | |
(forall a. Chain a) => Focusable (Root :: Type -> Location Type) Binary Source # | |
Focusable (Head :: Type -> Location Type) Stack Source # | |
Substructure (Just :: Type -> Maybe Type) (Construction Stack) Source # | |
Defined in Pandora.Paradigm.Structure.Rose Associated Types type Substructural Just (Construction Stack) a :: Type Source # Methods substructure :: Tagged Just (Construction Stack a) :-. Substructural Just (Construction Stack) a Source # | |
Focusable (Root :: Type -> Location Type) (Construction Stack) Source # | |
Defined in Pandora.Paradigm.Structure.Rose | |
Covariant t => Hoistable (TU Covariant Covariant t :: (Type -> Type) -> Type -> Type) Source # | |
Covariant (Schematic Monad t u) => Covariant (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Transformer.Monadic Methods (<$>) :: (a -> b) -> (t :> u) a -> (t :> u) b Source # comap :: (a -> b) -> (t :> u) a -> (t :> u) b Source # (<$) :: a -> (t :> u) b -> (t :> u) a Source # ($>) :: (t :> u) a -> b -> (t :> u) b Source # void :: (t :> u) a -> (t :> u) () Source # loeb :: (t :> u) (a <-| (t :> u)) -> (t :> u) a Source # (<&>) :: (t :> u) a -> (a -> b) -> (t :> u) b Source # (<$$>) :: Covariant u0 => (a -> b) -> (((t :> u) :. u0) := a) -> ((t :> u) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> (((t :> u) :. (u0 :. v)) := a) -> ((t :> u) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> (((t :> u) :. (u0 :. (v :. w))) := a) -> ((t :> u) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => (((t :> u) :. u0) := a) -> (a -> b) -> ((t :> u) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => (((t :> u) :. (u0 :. v)) := a) -> (a -> b) -> ((t :> u) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => (((t :> u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> ((t :> u) :. (u0 :. (v :. w))) := b Source # | |
Covariant (Schematic Comonad t u) => Covariant (t :< u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Transformer.Comonadic Methods (<$>) :: (a -> b) -> (t :< u) a -> (t :< u) b Source # comap :: (a -> b) -> (t :< u) a -> (t :< u) b Source # (<$) :: a -> (t :< u) b -> (t :< u) a Source # ($>) :: (t :< u) a -> b -> (t :< u) b Source # void :: (t :< u) a -> (t :< u) () Source # loeb :: (t :< u) (a <-| (t :< u)) -> (t :< u) a Source # (<&>) :: (t :< u) a -> (a -> b) -> (t :< u) b Source # (<$$>) :: Covariant u0 => (a -> b) -> (((t :< u) :. u0) := a) -> ((t :< u) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> (((t :< u) :. (u0 :. v)) := a) -> ((t :< u) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> (((t :< u) :. (u0 :. (v :. w))) := a) -> ((t :< u) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => (((t :< u) :. u0) := a) -> (a -> b) -> ((t :< u) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => (((t :< u) :. (u0 :. v)) := a) -> (a -> b) -> ((t :< u) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => (((t :< u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> ((t :< u) :. (u0 :. (v :. w))) := b Source # | |
Covariant (Tagged tag) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Tagged Methods (<$>) :: (a -> b) -> Tagged tag a -> Tagged tag b Source # comap :: (a -> b) -> Tagged tag a -> Tagged tag b Source # (<$) :: a -> Tagged tag b -> Tagged tag a Source # ($>) :: Tagged tag a -> b -> Tagged tag b Source # void :: Tagged tag a -> Tagged tag () Source # loeb :: Tagged tag (a <-| Tagged tag) -> Tagged tag a Source # (<&>) :: Tagged tag a -> (a -> b) -> Tagged tag b Source # (<$$>) :: Covariant u => (a -> b) -> ((Tagged tag :. u) := a) -> (Tagged tag :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Tagged tag :. (u :. v)) := a) -> (Tagged tag :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Tagged tag :. (u :. (v :. w))) := a) -> (Tagged tag :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Tagged tag :. u) := a) -> (a -> b) -> (Tagged tag :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Tagged tag :. (u :. v)) := a) -> (a -> b) -> (Tagged tag :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Tagged tag :. (u :. (v :. w))) := a) -> (a -> b) -> (Tagged tag :. (u :. (v :. w))) := b Source # | |
Covariant (Constant a :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Constant Methods (<$>) :: (a0 -> b) -> Constant a a0 -> Constant a b Source # comap :: (a0 -> b) -> Constant a a0 -> Constant a b Source # (<$) :: a0 -> Constant a b -> Constant a a0 Source # ($>) :: Constant a a0 -> b -> Constant a b Source # void :: Constant a a0 -> Constant a () Source # loeb :: Constant a (a0 <-| Constant a) -> Constant a a0 Source # (<&>) :: Constant a a0 -> (a0 -> b) -> Constant a b Source # (<$$>) :: Covariant u => (a0 -> b) -> ((Constant a :. u) := a0) -> (Constant a :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a0 -> b) -> ((Constant a :. (u :. v)) := a0) -> (Constant a :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a0 -> b) -> ((Constant a :. (u :. (v :. w))) := a0) -> (Constant a :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Constant a :. u) := a0) -> (a0 -> b) -> (Constant a :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Constant a :. (u :. v)) := a0) -> (a0 -> b) -> (Constant a :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Constant a :. (u :. (v :. w))) := a0) -> (a0 -> b) -> (Constant a :. (u :. (v :. w))) := b Source # | |
Covariant (Day t u) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Day Methods (<$>) :: (a -> b) -> Day t u a -> Day t u b Source # comap :: (a -> b) -> Day t u a -> Day t u b Source # (<$) :: a -> Day t u b -> Day t u a Source # ($>) :: Day t u a -> b -> Day t u b Source # void :: Day t u a -> Day t u () Source # loeb :: Day t u (a <-| Day t u) -> Day t u a Source # (<&>) :: Day t u a -> (a -> b) -> Day t u b Source # (<$$>) :: Covariant u0 => (a -> b) -> ((Day t u :. u0) := a) -> (Day t u :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((Day t u :. (u0 :. v)) := a) -> (Day t u :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((Day t u :. (u0 :. (v :. w))) := a) -> (Day t u :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => ((Day t u :. u0) := a) -> (a -> b) -> (Day t u :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => ((Day t u :. (u0 :. v)) := a) -> (a -> b) -> (Day t u :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((Day t u :. (u0 :. (v :. w))) := a) -> (a -> b) -> (Day t u :. (u0 :. (v :. w))) := b Source # | |
Covariant t => Covariant (Backwards t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Backwards Methods (<$>) :: (a -> b) -> Backwards t a -> Backwards t b Source # comap :: (a -> b) -> Backwards t a -> Backwards t b Source # (<$) :: a -> Backwards t b -> Backwards t a Source # ($>) :: Backwards t a -> b -> Backwards t b Source # void :: Backwards t a -> Backwards t () Source # loeb :: Backwards t (a <-| Backwards t) -> Backwards t a Source # (<&>) :: Backwards t a -> (a -> b) -> Backwards t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Backwards t :. u) := a) -> (Backwards t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Backwards t :. (u :. v)) := a) -> (Backwards t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Backwards t :. (u :. (v :. w))) := a) -> (Backwards t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Backwards t :. u) := a) -> (a -> b) -> (Backwards t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Backwards t :. (u :. v)) := a) -> (a -> b) -> (Backwards t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Backwards t :. (u :. (v :. w))) := a) -> (a -> b) -> (Backwards t :. (u :. (v :. w))) := b Source # | |
Covariant t => Covariant (Reverse t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Reverse Methods (<$>) :: (a -> b) -> Reverse t a -> Reverse t b Source # comap :: (a -> b) -> Reverse t a -> Reverse t b Source # (<$) :: a -> Reverse t b -> Reverse t a Source # ($>) :: Reverse t a -> b -> Reverse t b Source # void :: Reverse t a -> Reverse t () Source # loeb :: Reverse t (a <-| Reverse t) -> Reverse t a Source # (<&>) :: Reverse t a -> (a -> b) -> Reverse t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Reverse t :. u) := a) -> (Reverse t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Reverse t :. (u :. v)) := a) -> (Reverse t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Reverse t :. (u :. (v :. w))) := a) -> (Reverse t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Reverse t :. u) := a) -> (a -> b) -> (Reverse t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Reverse t :. (u :. v)) := a) -> (a -> b) -> (Reverse t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Reverse t :. (u :. (v :. w))) := a) -> (a -> b) -> (Reverse t :. (u :. (v :. w))) := b Source # | |
Covariant ((->) a :: Type -> Type) Source # | |
Defined in Pandora.Pattern.Functor.Covariant Methods (<$>) :: (a0 -> b) -> (a -> a0) -> a -> b Source # comap :: (a0 -> b) -> (a -> a0) -> a -> b Source # (<$) :: a0 -> (a -> b) -> a -> a0 Source # ($>) :: (a -> a0) -> b -> a -> b Source # void :: (a -> a0) -> a -> () Source # loeb :: (a -> (a0 <-| (->) a)) -> a -> a0 Source # (<&>) :: (a -> a0) -> (a0 -> b) -> a -> b Source # (<$$>) :: Covariant u => (a0 -> b) -> (((->) a :. u) := a0) -> ((->) a :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a0 -> b) -> (((->) a :. (u :. v)) := a0) -> ((->) a :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a0 -> b) -> (((->) a :. (u :. (v :. w))) := a0) -> ((->) a :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => (((->) a :. u) := a0) -> (a0 -> b) -> ((->) a :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => (((->) a :. (u :. v)) := a0) -> (a0 -> b) -> ((->) a :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => (((->) a :. (u :. (v :. w))) := a0) -> (a0 -> b) -> ((->) a :. (u :. (v :. w))) := b Source # | |
Covariant t => Covariant (Continuation r t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Continuation Methods (<$>) :: (a -> b) -> Continuation r t a -> Continuation r t b Source # comap :: (a -> b) -> Continuation r t a -> Continuation r t b Source # (<$) :: a -> Continuation r t b -> Continuation r t a Source # ($>) :: Continuation r t a -> b -> Continuation r t b Source # void :: Continuation r t a -> Continuation r t () Source # loeb :: Continuation r t (a <-| Continuation r t) -> Continuation r t a Source # (<&>) :: Continuation r t a -> (a -> b) -> Continuation r t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Continuation r t :. u) := a) -> (Continuation r t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Continuation r t :. (u :. v)) := a) -> (Continuation r t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Continuation r t :. (u :. (v :. w))) := a) -> (Continuation r t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Continuation r t :. u) := a) -> (a -> b) -> (Continuation r t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Continuation r t :. (u :. v)) := a) -> (a -> b) -> (Continuation r t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Continuation r t :. (u :. (v :. w))) := a) -> (a -> b) -> (Continuation r t :. (u :. (v :. w))) := b Source # | |
Covariant u => Covariant ((((->) s :: Type -> Type) <:<.>:> (:*:) s) := u) Source # | |
Defined in Pandora.Paradigm.Inventory.State Methods (<$>) :: (a -> b) -> (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b Source # comap :: (a -> b) -> (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b Source # (<$) :: a -> (((->) s <:<.>:> (:*:) s) := u) b -> (((->) s <:<.>:> (:*:) s) := u) a Source # ($>) :: (((->) s <:<.>:> (:*:) s) := u) a -> b -> (((->) s <:<.>:> (:*:) s) := u) b Source # void :: (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) () Source # loeb :: (((->) s <:<.>:> (:*:) s) := u) (a <-| (((->) s <:<.>:> (:*:) s) := u)) -> (((->) s <:<.>:> (:*:) s) := u) a Source # (<&>) :: (((->) s <:<.>:> (:*:) s) := u) a -> (a -> b) -> (((->) s <:<.>:> (:*:) s) := u) b Source # (<$$>) :: Covariant u0 => (a -> b) -> (((((->) s <:<.>:> (:*:) s) := u) :. u0) := a) -> ((((->) s <:<.>:> (:*:) s) := u) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. v)) := a) -> ((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. (v :. w))) := a) -> ((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => (((((->) s <:<.>:> (:*:) s) := u) :. u0) := a) -> (a -> b) -> ((((->) s <:<.>:> (:*:) s) := u) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. v)) := a) -> (a -> b) -> ((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> ((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. (v :. w))) := b Source # | |
Covariant u => Covariant (((:*:) p <:<.>:> ((->) p :: Type -> Type)) := u) Source # | |
Defined in Pandora.Paradigm.Inventory.Store Methods (<$>) :: (a -> b) -> (((:*:) p <:<.>:> (->) p) := u) a -> (((:*:) p <:<.>:> (->) p) := u) b Source # comap :: (a -> b) -> (((:*:) p <:<.>:> (->) p) := u) a -> (((:*:) p <:<.>:> (->) p) := u) b Source # (<$) :: a -> (((:*:) p <:<.>:> (->) p) := u) b -> (((:*:) p <:<.>:> (->) p) := u) a Source # ($>) :: (((:*:) p <:<.>:> (->) p) := u) a -> b -> (((:*:) p <:<.>:> (->) p) := u) b Source # void :: (((:*:) p <:<.>:> (->) p) := u) a -> (((:*:) p <:<.>:> (->) p) := u) () Source # loeb :: (((:*:) p <:<.>:> (->) p) := u) (a <-| (((:*:) p <:<.>:> (->) p) := u)) -> (((:*:) p <:<.>:> (->) p) := u) a Source # (<&>) :: (((:*:) p <:<.>:> (->) p) := u) a -> (a -> b) -> (((:*:) p <:<.>:> (->) p) := u) b Source # (<$$>) :: Covariant u0 => (a -> b) -> (((((:*:) p <:<.>:> (->) p) := u) :. u0) := a) -> ((((:*:) p <:<.>:> (->) p) := u) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> (((((:*:) p <:<.>:> (->) p) := u) :. (u0 :. v)) := a) -> ((((:*:) p <:<.>:> (->) p) := u) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> (((((:*:) p <:<.>:> (->) p) := u) :. (u0 :. (v :. w))) := a) -> ((((:*:) p <:<.>:> (->) p) := u) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => (((((:*:) p <:<.>:> (->) p) := u) :. u0) := a) -> (a -> b) -> ((((:*:) p <:<.>:> (->) p) := u) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => (((((:*:) p <:<.>:> (->) p) := u) :. (u0 :. v)) := a) -> (a -> b) -> ((((:*:) p <:<.>:> (->) p) := u) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => (((((:*:) p <:<.>:> (->) p) := u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> ((((:*:) p <:<.>:> (->) p) := u) :. (u0 :. (v :. w))) := b Source # | |
Covariant u => Covariant (((->) e :: Type -> Type) <.:> u) Source # | |
Defined in Pandora.Paradigm.Inventory.Imprint Methods (<$>) :: (a -> b) -> ((->) e <.:> u) a -> ((->) e <.:> u) b Source # comap :: (a -> b) -> ((->) e <.:> u) a -> ((->) e <.:> u) b Source # (<$) :: a -> ((->) e <.:> u) b -> ((->) e <.:> u) a Source # ($>) :: ((->) e <.:> u) a -> b -> ((->) e <.:> u) b Source # void :: ((->) e <.:> u) a -> ((->) e <.:> u) () Source # loeb :: ((->) e <.:> u) (a <-| ((->) e <.:> u)) -> ((->) e <.:> u) a Source # (<&>) :: ((->) e <.:> u) a -> (a -> b) -> ((->) e <.:> u) b Source # (<$$>) :: Covariant u0 => (a -> b) -> ((((->) e <.:> u) :. u0) := a) -> (((->) e <.:> u) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((((->) e <.:> u) :. (u0 :. v)) := a) -> (((->) e <.:> u) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((((->) e <.:> u) :. (u0 :. (v :. w))) := a) -> (((->) e <.:> u) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => ((((->) e <.:> u) :. u0) := a) -> (a -> b) -> (((->) e <.:> u) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => ((((->) e <.:> u) :. (u0 :. v)) := a) -> (a -> b) -> (((->) e <.:> u) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((((->) e <.:> u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> (((->) e <.:> u) :. (u0 :. (v :. w))) := b Source # | |
Covariant u => Covariant ((:*:) e <.:> u) Source # | |
Defined in Pandora.Paradigm.Inventory.Accumulator Methods (<$>) :: (a -> b) -> ((:*:) e <.:> u) a -> ((:*:) e <.:> u) b Source # comap :: (a -> b) -> ((:*:) e <.:> u) a -> ((:*:) e <.:> u) b Source # (<$) :: a -> ((:*:) e <.:> u) b -> ((:*:) e <.:> u) a Source # ($>) :: ((:*:) e <.:> u) a -> b -> ((:*:) e <.:> u) b Source # void :: ((:*:) e <.:> u) a -> ((:*:) e <.:> u) () Source # loeb :: ((:*:) e <.:> u) (a <-| ((:*:) e <.:> u)) -> ((:*:) e <.:> u) a Source # (<&>) :: ((:*:) e <.:> u) a -> (a -> b) -> ((:*:) e <.:> u) b Source # (<$$>) :: Covariant u0 => (a -> b) -> ((((:*:) e <.:> u) :. u0) := a) -> (((:*:) e <.:> u) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((((:*:) e <.:> u) :. (u0 :. v)) := a) -> (((:*:) e <.:> u) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((((:*:) e <.:> u) :. (u0 :. (v :. w))) := a) -> (((:*:) e <.:> u) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => ((((:*:) e <.:> u) :. u0) := a) -> (a -> b) -> (((:*:) e <.:> u) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => ((((:*:) e <.:> u) :. (u0 :. v)) := a) -> (a -> b) -> (((:*:) e <.:> u) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((((:*:) e <.:> u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> (((:*:) e <.:> u) :. (u0 :. (v :. w))) := b Source # | |
Covariant u => Covariant (((->) e :: Type -> Type) <:.> u) Source # | |
Defined in Pandora.Paradigm.Inventory.Environment Methods (<$>) :: (a -> b) -> ((->) e <:.> u) a -> ((->) e <:.> u) b Source # comap :: (a -> b) -> ((->) e <:.> u) a -> ((->) e <:.> u) b Source # (<$) :: a -> ((->) e <:.> u) b -> ((->) e <:.> u) a Source # ($>) :: ((->) e <:.> u) a -> b -> ((->) e <:.> u) b Source # void :: ((->) e <:.> u) a -> ((->) e <:.> u) () Source # loeb :: ((->) e <:.> u) (a <-| ((->) e <:.> u)) -> ((->) e <:.> u) a Source # (<&>) :: ((->) e <:.> u) a -> (a -> b) -> ((->) e <:.> u) b Source # (<$$>) :: Covariant u0 => (a -> b) -> ((((->) e <:.> u) :. u0) := a) -> (((->) e <:.> u) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((((->) e <:.> u) :. (u0 :. v)) := a) -> (((->) e <:.> u) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((((->) e <:.> u) :. (u0 :. (v :. w))) := a) -> (((->) e <:.> u) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => ((((->) e <:.> u) :. u0) := a) -> (a -> b) -> (((->) e <:.> u) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => ((((->) e <:.> u) :. (u0 :. v)) := a) -> (a -> b) -> (((->) e <:.> u) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((((->) e <:.> u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> (((->) e <:.> u) :. (u0 :. (v :. w))) := b Source # | |
(Covariant t, Covariant u) => Covariant (u <:.> Construction t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Construction Methods (<$>) :: (a -> b) -> (u <:.> Construction t) a -> (u <:.> Construction t) b Source # comap :: (a -> b) -> (u <:.> Construction t) a -> (u <:.> Construction t) b Source # (<$) :: a -> (u <:.> Construction t) b -> (u <:.> Construction t) a Source # ($>) :: (u <:.> Construction t) a -> b -> (u <:.> Construction t) b Source # void :: (u <:.> Construction t) a -> (u <:.> Construction t) () Source # loeb :: (u <:.> Construction t) (a <-| (u <:.> Construction t)) -> (u <:.> Construction t) a Source # (<&>) :: (u <:.> Construction t) a -> (a -> b) -> (u <:.> Construction t) b Source # (<$$>) :: Covariant u0 => (a -> b) -> (((u <:.> Construction t) :. u0) := a) -> ((u <:.> Construction t) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> (((u <:.> Construction t) :. (u0 :. v)) := a) -> ((u <:.> Construction t) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> (((u <:.> Construction t) :. (u0 :. (v :. w))) := a) -> ((u <:.> Construction t) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => (((u <:.> Construction t) :. u0) := a) -> (a -> b) -> ((u <:.> Construction t) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => (((u <:.> Construction t) :. (u0 :. v)) := a) -> (a -> b) -> ((u <:.> Construction t) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => (((u <:.> Construction t) :. (u0 :. (v :. w))) := a) -> (a -> b) -> ((u <:.> Construction t) :. (u0 :. (v :. w))) := b Source # | |
Covariant u => Covariant ((:*:) e <:.> u) Source # | |
Defined in Pandora.Paradigm.Inventory.Equipment Methods (<$>) :: (a -> b) -> ((:*:) e <:.> u) a -> ((:*:) e <:.> u) b Source # comap :: (a -> b) -> ((:*:) e <:.> u) a -> ((:*:) e <:.> u) b Source # (<$) :: a -> ((:*:) e <:.> u) b -> ((:*:) e <:.> u) a Source # ($>) :: ((:*:) e <:.> u) a -> b -> ((:*:) e <:.> u) b Source # void :: ((:*:) e <:.> u) a -> ((:*:) e <:.> u) () Source # loeb :: ((:*:) e <:.> u) (a <-| ((:*:) e <:.> u)) -> ((:*:) e <:.> u) a Source # (<&>) :: ((:*:) e <:.> u) a -> (a -> b) -> ((:*:) e <:.> u) b Source # (<$$>) :: Covariant u0 => (a -> b) -> ((((:*:) e <:.> u) :. u0) := a) -> (((:*:) e <:.> u) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((((:*:) e <:.> u) :. (u0 :. v)) := a) -> (((:*:) e <:.> u) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((((:*:) e <:.> u) :. (u0 :. (v :. w))) := a) -> (((:*:) e <:.> u) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => ((((:*:) e <:.> u) :. u0) := a) -> (a -> b) -> (((:*:) e <:.> u) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => ((((:*:) e <:.> u) :. (u0 :. v)) := a) -> (a -> b) -> (((:*:) e <:.> u) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((((:*:) e <:.> u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> (((:*:) e <:.> u) :. (u0 :. (v :. w))) := b Source # | |
Covariant (Delta <:.> Stack) Source # | |
Defined in Pandora.Paradigm.Structure.Stack Methods (<$>) :: (a -> b) -> (Delta <:.> Stack) a -> (Delta <:.> Stack) b Source # comap :: (a -> b) -> (Delta <:.> Stack) a -> (Delta <:.> Stack) b Source # (<$) :: a -> (Delta <:.> Stack) b -> (Delta <:.> Stack) a Source # ($>) :: (Delta <:.> Stack) a -> b -> (Delta <:.> Stack) b Source # void :: (Delta <:.> Stack) a -> (Delta <:.> Stack) () Source # loeb :: (Delta <:.> Stack) (a <-| (Delta <:.> Stack)) -> (Delta <:.> Stack) a Source # (<&>) :: (Delta <:.> Stack) a -> (a -> b) -> (Delta <:.> Stack) b Source # (<$$>) :: Covariant u => (a -> b) -> (((Delta <:.> Stack) :. u) := a) -> ((Delta <:.> Stack) :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> (((Delta <:.> Stack) :. (u :. v)) := a) -> ((Delta <:.> Stack) :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> (((Delta <:.> Stack) :. (u :. (v :. w))) := a) -> ((Delta <:.> Stack) :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => (((Delta <:.> Stack) :. u) := a) -> (a -> b) -> ((Delta <:.> Stack) :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => (((Delta <:.> Stack) :. (u :. v)) := a) -> (a -> b) -> ((Delta <:.> Stack) :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => (((Delta <:.> Stack) :. (u :. (v :. w))) := a) -> (a -> b) -> ((Delta <:.> Stack) :. (u :. (v :. w))) := b Source # | |
Bindable u => Bindable ((((->) s :: Type -> Type) <:<.>:> (:*:) s) := u) Source # | |
Defined in Pandora.Paradigm.Inventory.State Methods (>>=) :: (((->) s <:<.>:> (:*:) s) := u) a -> (a -> (((->) s <:<.>:> (:*:) s) := u) b) -> (((->) s <:<.>:> (:*:) s) := u) b Source # (=<<) :: (a -> (((->) s <:<.>:> (:*:) s) := u) b) -> (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b Source # bind :: (a -> (((->) s <:<.>:> (:*:) s) := u) b) -> (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b Source # join :: (((((->) s <:<.>:> (:*:) s) := u) :. (((->) s <:<.>:> (:*:) s) := u)) := a) -> (((->) s <:<.>:> (:*:) s) := u) a Source # (>=>) :: (a -> (((->) s <:<.>:> (:*:) s) := u) b) -> (b -> (((->) s <:<.>:> (:*:) s) := u) c) -> a -> (((->) s <:<.>:> (:*:) s) := u) c Source # (<=<) :: (b -> (((->) s <:<.>:> (:*:) s) := u) c) -> (a -> (((->) s <:<.>:> (:*:) s) := u) b) -> a -> (((->) s <:<.>:> (:*:) s) := u) c Source # ($>>=) :: Covariant u0 => (a -> (((->) s <:<.>:> (:*:) s) := u) b) -> ((u0 :. (((->) s <:<.>:> (:*:) s) := u)) := a) -> (u0 :. (((->) s <:<.>:> (:*:) s) := u)) := b Source # (<>>=) :: ((((->) s <:<.>:> (:*:) s) := u) b -> c) -> (a -> (((->) s <:<.>:> (:*:) s) := u) b) -> (((->) s <:<.>:> (:*:) s) := u) a -> c Source # | |
(Semigroup e, Pointable u, Bindable u) => Bindable ((:*:) e <.:> u) Source # | |
Defined in Pandora.Paradigm.Inventory.Accumulator Methods (>>=) :: ((:*:) e <.:> u) a -> (a -> ((:*:) e <.:> u) b) -> ((:*:) e <.:> u) b Source # (=<<) :: (a -> ((:*:) e <.:> u) b) -> ((:*:) e <.:> u) a -> ((:*:) e <.:> u) b Source # bind :: (a -> ((:*:) e <.:> u) b) -> ((:*:) e <.:> u) a -> ((:*:) e <.:> u) b Source # join :: ((((:*:) e <.:> u) :. ((:*:) e <.:> u)) := a) -> ((:*:) e <.:> u) a Source # (>=>) :: (a -> ((:*:) e <.:> u) b) -> (b -> ((:*:) e <.:> u) c) -> a -> ((:*:) e <.:> u) c Source # (<=<) :: (b -> ((:*:) e <.:> u) c) -> (a -> ((:*:) e <.:> u) b) -> a -> ((:*:) e <.:> u) c Source # ($>>=) :: Covariant u0 => (a -> ((:*:) e <.:> u) b) -> ((u0 :. ((:*:) e <.:> u)) := a) -> (u0 :. ((:*:) e <.:> u)) := b Source # (<>>=) :: (((:*:) e <.:> u) b -> c) -> (a -> ((:*:) e <.:> u) b) -> ((:*:) e <.:> u) a -> c Source # | |
Bindable u => Bindable (((->) e :: Type -> Type) <:.> u) Source # | |
Defined in Pandora.Paradigm.Inventory.Environment Methods (>>=) :: ((->) e <:.> u) a -> (a -> ((->) e <:.> u) b) -> ((->) e <:.> u) b Source # (=<<) :: (a -> ((->) e <:.> u) b) -> ((->) e <:.> u) a -> ((->) e <:.> u) b Source # bind :: (a -> ((->) e <:.> u) b) -> ((->) e <:.> u) a -> ((->) e <:.> u) b Source # join :: ((((->) e <:.> u) :. ((->) e <:.> u)) := a) -> ((->) e <:.> u) a Source # (>=>) :: (a -> ((->) e <:.> u) b) -> (b -> ((->) e <:.> u) c) -> a -> ((->) e <:.> u) c Source # (<=<) :: (b -> ((->) e <:.> u) c) -> (a -> ((->) e <:.> u) b) -> a -> ((->) e <:.> u) c Source # ($>>=) :: Covariant u0 => (a -> ((->) e <:.> u) b) -> ((u0 :. ((->) e <:.> u)) := a) -> (u0 :. ((->) e <:.> u)) := b Source # (<>>=) :: (((->) e <:.> u) b -> c) -> (a -> ((->) e <:.> u) b) -> ((->) e <:.> u) a -> c Source # | |
Bindable u => Applicative ((((->) s :: Type -> Type) <:<.>:> (:*:) s) := u) Source # | |
Defined in Pandora.Paradigm.Inventory.State Methods (<*>) :: (((->) s <:<.>:> (:*:) s) := u) (a -> b) -> (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b Source # apply :: (((->) s <:<.>:> (:*:) s) := u) (a -> b) -> (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b Source # (*>) :: (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b -> (((->) s <:<.>:> (:*:) s) := u) b Source # (<*) :: (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b -> (((->) s <:<.>:> (:*:) s) := u) a Source # forever :: (((->) s <:<.>:> (:*:) s) := u) a -> (((->) s <:<.>:> (:*:) s) := u) b Source # (<**>) :: Applicative u0 => (((((->) s <:<.>:> (:*:) s) := u) :. u0) := (a -> b)) -> (((((->) s <:<.>:> (:*:) s) := u) :. u0) := a) -> ((((->) s <:<.>:> (:*:) s) := u) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. v)) := (a -> b)) -> (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. v)) := a) -> ((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. (v :. w))) := (a -> b)) -> (((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. (v :. w))) := a) -> ((((->) s <:<.>:> (:*:) s) := u) :. (u0 :. (v :. w))) := b Source # | |
Applicative u => Applicative (((->) e :: Type -> Type) <.:> u) Source # | |
Defined in Pandora.Paradigm.Inventory.Imprint Methods (<*>) :: ((->) e <.:> u) (a -> b) -> ((->) e <.:> u) a -> ((->) e <.:> u) b Source # apply :: ((->) e <.:> u) (a -> b) -> ((->) e <.:> u) a -> ((->) e <.:> u) b Source # (*>) :: ((->) e <.:> u) a -> ((->) e <.:> u) b -> ((->) e <.:> u) b Source # (<*) :: ((->) e <.:> u) a -> ((->) e <.:> u) b -> ((->) e <.:> u) a Source # forever :: ((->) e <.:> u) a -> ((->) e <.:> u) b Source # (<**>) :: Applicative u0 => ((((->) e <.:> u) :. u0) := (a -> b)) -> ((((->) e <.:> u) :. u0) := a) -> (((->) e <.:> u) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => ((((->) e <.:> u) :. (u0 :. v)) := (a -> b)) -> ((((->) e <.:> u) :. (u0 :. v)) := a) -> (((->) e <.:> u) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => ((((->) e <.:> u) :. (u0 :. (v :. w))) := (a -> b)) -> ((((->) e <.:> u) :. (u0 :. (v :. w))) := a) -> (((->) e <.:> u) :. (u0 :. (v :. w))) := b Source # | |
(Semigroup e, Applicative u) => Applicative ((:*:) e <.:> u) Source # | |
Defined in Pandora.Paradigm.Inventory.Accumulator Methods (<*>) :: ((:*:) e <.:> u) (a -> b) -> ((:*:) e <.:> u) a -> ((:*:) e <.:> u) b Source # apply :: ((:*:) e <.:> u) (a -> b) -> ((:*:) e <.:> u) a -> ((:*:) e <.:> u) b Source # (*>) :: ((:*:) e <.:> u) a -> ((:*:) e <.:> u) b -> ((:*:) e <.:> u) b Source # (<*) :: ((:*:) e <.:> u) a -> ((:*:) e <.:> u) b -> ((:*:) e <.:> u) a Source # forever :: ((:*:) e <.:> u) a -> ((:*:) e <.:> u) b Source # (<**>) :: Applicative u0 => ((((:*:) e <.:> u) :. u0) := (a -> b)) -> ((((:*:) e <.:> u) :. u0) := a) -> (((:*:) e <.:> u) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => ((((:*:) e <.:> u) :. (u0 :. v)) := (a -> b)) -> ((((:*:) e <.:> u) :. (u0 :. v)) := a) -> (((:*:) e <.:> u) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => ((((:*:) e <.:> u) :. (u0 :. (v :. w))) := (a -> b)) -> ((((:*:) e <.:> u) :. (u0 :. (v :. w))) := a) -> (((:*:) e <.:> u) :. (u0 :. (v :. w))) := b Source # | |
Applicative u => Applicative (((->) e :: Type -> Type) <:.> u) Source # | |
Defined in Pandora.Paradigm.Inventory.Environment Methods (<*>) :: ((->) e <:.> u) (a -> b) -> ((->) e <:.> u) a -> ((->) e <:.> u) b Source # apply :: ((->) e <:.> u) (a -> b) -> ((->) e <:.> u) a -> ((->) e <:.> u) b Source # (*>) :: ((->) e <:.> u) a -> ((->) e <:.> u) b -> ((->) e <:.> u) b Source # (<*) :: ((->) e <:.> u) a -> ((->) e <:.> u) b -> ((->) e <:.> u) a Source # forever :: ((->) e <:.> u) a -> ((->) e <:.> u) b Source # (<**>) :: Applicative u0 => ((((->) e <:.> u) :. u0) := (a -> b)) -> ((((->) e <:.> u) :. u0) := a) -> (((->) e <:.> u) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => ((((->) e <:.> u) :. (u0 :. v)) := (a -> b)) -> ((((->) e <:.> u) :. (u0 :. v)) := a) -> (((->) e <:.> u) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => ((((->) e <:.> u) :. (u0 :. (v :. w))) := (a -> b)) -> ((((->) e <:.> u) :. (u0 :. (v :. w))) := a) -> (((->) e <:.> u) :. (u0 :. (v :. w))) := b Source # | |
(Applicative t, Applicative u) => Applicative (u <:.> Construction t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Construction Methods (<*>) :: (u <:.> Construction t) (a -> b) -> (u <:.> Construction t) a -> (u <:.> Construction t) b Source # apply :: (u <:.> Construction t) (a -> b) -> (u <:.> Construction t) a -> (u <:.> Construction t) b Source # (*>) :: (u <:.> Construction t) a -> (u <:.> Construction t) b -> (u <:.> Construction t) b Source # (<*) :: (u <:.> Construction t) a -> (u <:.> Construction t) b -> (u <:.> Construction t) a Source # forever :: (u <:.> Construction t) a -> (u <:.> Construction t) b Source # (<**>) :: Applicative u0 => (((u <:.> Construction t) :. u0) := (a -> b)) -> (((u <:.> Construction t) :. u0) := a) -> ((u <:.> Construction t) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => (((u <:.> Construction t) :. (u0 :. v)) := (a -> b)) -> (((u <:.> Construction t) :. (u0 :. v)) := a) -> ((u <:.> Construction t) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => (((u <:.> Construction t) :. (u0 :. (v :. w))) := (a -> b)) -> (((u <:.> Construction t) :. (u0 :. (v :. w))) := a) -> ((u <:.> Construction t) :. (u0 :. (v :. w))) := b Source # | |
Alternative u => Alternative ((((->) s :: Type -> Type) <:<.>:> (:*:) s) := u) Source # | |
Defined in Pandora.Paradigm.Inventory.State | |
(Covariant t, Alternative u) => Alternative (u <:.> Construction t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Construction Methods (<+>) :: (u <:.> Construction t) a -> (u <:.> Construction t) a -> (u <:.> Construction t) a Source # alter :: (u <:.> Construction t) a -> (u <:.> Construction t) a -> (u <:.> Construction t) a Source # | |
Avoidable u => Avoidable ((((->) s :: Type -> Type) <:<.>:> (:*:) s) := u) Source # | |
(Covariant t, Avoidable u) => Avoidable (u <:.> Construction t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Construction Methods empty :: (u <:.> Construction t) a Source # | |
Extendable u => Extendable (((:*:) p <:<.>:> ((->) p :: Type -> Type)) := u) Source # | |
Defined in Pandora.Paradigm.Inventory.Store Methods (=>>) :: (((:*:) p <:<.>:> (->) p) := u) a -> ((((:*:) p <:<.>:> (->) p) := u) a -> b) -> (((:*:) p <:<.>:> (->) p) := u) b Source # (<<=) :: ((((:*:) p <:<.>:> (->) p) := u) a -> b) -> (((:*:) p <:<.>:> (->) p) := u) a -> (((:*:) p <:<.>:> (->) p) := u) b Source # extend :: ((((:*:) p <:<.>:> (->) p) := u) a -> b) -> (((:*:) p <:<.>:> (->) p) := u) a -> (((:*:) p <:<.>:> (->) p) := u) b Source # duplicate :: (((:*:) p <:<.>:> (->) p) := u) a -> ((((:*:) p <:<.>:> (->) p) := u) :. (((:*:) p <:<.>:> (->) p) := u)) := a Source # (=<=) :: ((((:*:) p <:<.>:> (->) p) := u) b -> c) -> ((((:*:) p <:<.>:> (->) p) := u) a -> b) -> (((:*:) p <:<.>:> (->) p) := u) a -> c Source # (=>=) :: ((((:*:) p <:<.>:> (->) p) := u) a -> b) -> ((((:*:) p <:<.>:> (->) p) := u) b -> c) -> (((:*:) p <:<.>:> (->) p) := u) a -> c Source # ($=>>) :: Covariant u0 => ((((:*:) p <:<.>:> (->) p) := u) a -> b) -> ((u0 :. (((:*:) p <:<.>:> (->) p) := u)) := a) -> (u0 :. (((:*:) p <:<.>:> (->) p) := u)) := b Source # (<<=$) :: Covariant u0 => ((u0 :. (((:*:) p <:<.>:> (->) p) := u)) := a) -> ((((:*:) p <:<.>:> (->) p) := u) a -> b) -> (u0 :. (((:*:) p <:<.>:> (->) p) := u)) := b Source # | |
(Semigroup e, Extendable u) => Extendable (((->) e :: Type -> Type) <.:> u) Source # | |
Defined in Pandora.Paradigm.Inventory.Imprint Methods (=>>) :: ((->) e <.:> u) a -> (((->) e <.:> u) a -> b) -> ((->) e <.:> u) b Source # (<<=) :: (((->) e <.:> u) a -> b) -> ((->) e <.:> u) a -> ((->) e <.:> u) b Source # extend :: (((->) e <.:> u) a -> b) -> ((->) e <.:> u) a -> ((->) e <.:> u) b Source # duplicate :: ((->) e <.:> u) a -> (((->) e <.:> u) :. ((->) e <.:> u)) := a Source # (=<=) :: (((->) e <.:> u) b -> c) -> (((->) e <.:> u) a -> b) -> ((->) e <.:> u) a -> c Source # (=>=) :: (((->) e <.:> u) a -> b) -> (((->) e <.:> u) b -> c) -> ((->) e <.:> u) a -> c Source # ($=>>) :: Covariant u0 => (((->) e <.:> u) a -> b) -> ((u0 :. ((->) e <.:> u)) := a) -> (u0 :. ((->) e <.:> u)) := b Source # (<<=$) :: Covariant u0 => ((u0 :. ((->) e <.:> u)) := a) -> (((->) e <.:> u) a -> b) -> (u0 :. ((->) e <.:> u)) := b Source # | |
Extendable u => Extendable ((:*:) e <:.> u) Source # | |
Defined in Pandora.Paradigm.Inventory.Equipment Methods (=>>) :: ((:*:) e <:.> u) a -> (((:*:) e <:.> u) a -> b) -> ((:*:) e <:.> u) b Source # (<<=) :: (((:*:) e <:.> u) a -> b) -> ((:*:) e <:.> u) a -> ((:*:) e <:.> u) b Source # extend :: (((:*:) e <:.> u) a -> b) -> ((:*:) e <:.> u) a -> ((:*:) e <:.> u) b Source # duplicate :: ((:*:) e <:.> u) a -> (((:*:) e <:.> u) :. ((:*:) e <:.> u)) := a Source # (=<=) :: (((:*:) e <:.> u) b -> c) -> (((:*:) e <:.> u) a -> b) -> ((:*:) e <:.> u) a -> c Source # (=>=) :: (((:*:) e <:.> u) a -> b) -> (((:*:) e <:.> u) b -> c) -> ((:*:) e <:.> u) a -> c Source # ($=>>) :: Covariant u0 => (((:*:) e <:.> u) a -> b) -> ((u0 :. ((:*:) e <:.> u)) := a) -> (u0 :. ((:*:) e <:.> u)) := b Source # (<<=$) :: Covariant u0 => ((u0 :. ((:*:) e <:.> u)) := a) -> (((:*:) e <:.> u) a -> b) -> (u0 :. ((:*:) e <:.> u)) := b Source # | |
Pointable u => Pointable ((((->) s :: Type -> Type) <:<.>:> (:*:) s) := u) Source # | |
(Pointable u, Monoid e) => Pointable ((:*:) e <.:> u) Source # | |
(Covariant u, Pointable u) => Pointable (((->) e :: Type -> Type) <:.> u) Source # | |
(Avoidable t, Pointable u) => Pointable (u <:.> Construction t) Source # | |
Monad u => Monad ((((->) s :: Type -> Type) <:<.>:> (:*:) s) := u) Source # | |
Defined in Pandora.Paradigm.Inventory.State | |
(Traversable t, Traversable u) => Traversable (u <:.> Construction t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Construction Methods (->>) :: (Pointable u0, Applicative u0) => (u <:.> Construction t) a -> (a -> u0 b) -> (u0 :. (u <:.> Construction t)) := b Source # traverse :: (Pointable u0, Applicative u0) => (a -> u0 b) -> (u <:.> Construction t) a -> (u0 :. (u <:.> Construction t)) := b Source # sequence :: (Pointable u0, Applicative u0) => (((u <:.> Construction t) :. u0) := a) -> (u0 :. (u <:.> Construction t)) := a Source # (->>>) :: (Pointable u0, Applicative u0, Traversable v) => ((v :. (u <:.> Construction t)) := a) -> (a -> u0 b) -> (u0 :. (v :. (u <:.> Construction t))) := b Source # (->>>>) :: (Pointable u0, Applicative u0, Traversable v, Traversable w) => ((w :. (v :. (u <:.> Construction t))) := a) -> (a -> u0 b) -> (u0 :. (w :. (v :. (u <:.> Construction t)))) := b Source # (->>>>>) :: (Pointable u0, Applicative u0, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. (u <:.> Construction t)))) := a) -> (a -> u0 b) -> (u0 :. (j :. (w :. (v :. (u <:.> Construction t))))) := b Source # | |
Extractable u => Extractable (((:*:) p <:<.>:> ((->) p :: Type -> Type)) := u) Source # | |
(Monoid e, Extractable u) => Extractable (((->) e :: Type -> Type) <.:> u) Source # | |
Extractable u => Extractable ((:*:) e <:.> u) Source # | |
(Covariant (t <.:> v), Covariant (w <:.> u), Adjoint v u, Adjoint t w) => Adjoint (t <.:> v) (w <:.> u) Source # | |
Defined in Pandora.Paradigm.Schemes | |
(Covariant (t <.:> v), Covariant (w <.:> u), Adjoint t u, Adjoint v w) => Adjoint (t <.:> v) (w <.:> u) Source # | |
Defined in Pandora.Paradigm.Schemes | |
(Covariant (v <:.> t), Covariant (w <.:> u), Adjoint t u, Adjoint v w) => Adjoint (v <:.> t) (w <.:> u) Source # | |
Defined in Pandora.Paradigm.Schemes | |
(Covariant (v <:.> t), Covariant (u <:.> w), Adjoint t u, Adjoint v w) => Adjoint (v <:.> t) (u <:.> w) Source # | |
Defined in Pandora.Paradigm.Schemes | |
Covariant (Kan (Right :: Type -> Wye Type) t u b) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Kan Methods (<$>) :: (a -> b0) -> Kan Right t u b a -> Kan Right t u b b0 Source # comap :: (a -> b0) -> Kan Right t u b a -> Kan Right t u b b0 Source # (<$) :: a -> Kan Right t u b b0 -> Kan Right t u b a Source # ($>) :: Kan Right t u b a -> b0 -> Kan Right t u b b0 Source # void :: Kan Right t u b a -> Kan Right t u b () Source # loeb :: Kan Right t u b (a <-| Kan Right t u b) -> Kan Right t u b a Source # (<&>) :: Kan Right t u b a -> (a -> b0) -> Kan Right t u b b0 Source # (<$$>) :: Covariant u0 => (a -> b0) -> ((Kan Right t u b :. u0) := a) -> (Kan Right t u b :. u0) := b0 Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b0) -> ((Kan Right t u b :. (u0 :. v)) := a) -> (Kan Right t u b :. (u0 :. v)) := b0 Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b0) -> ((Kan Right t u b :. (u0 :. (v :. w))) := a) -> (Kan Right t u b :. (u0 :. (v :. w))) := b0 Source # (<&&>) :: Covariant u0 => ((Kan Right t u b :. u0) := a) -> (a -> b0) -> (Kan Right t u b :. u0) := b0 Source # (<&&&>) :: (Covariant u0, Covariant v) => ((Kan Right t u b :. (u0 :. v)) := a) -> (a -> b0) -> (Kan Right t u b :. (u0 :. v)) := b0 Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((Kan Right t u b :. (u0 :. (v :. w))) := a) -> (a -> b0) -> (Kan Right t u b :. (u0 :. (v :. w))) := b0 Source # | |
(Adjoint t' t, Applicative t, Pointable t, forall (u :: Type -> Type). Traversable u) => Liftable (t <:<.>:> t') Source # | |
(Adjoint t t', Distributive t') => Lowerable (t <:<.>:> t') Source # | |
(Covariant ((t <:<.>:> u) t'), Covariant ((v <:<.>:> w) v'), Adjoint t w, Adjoint t' v', Adjoint t v, Adjoint u v, Adjoint v' t') => Adjoint ((t <:<.>:> u) t') ((v <:<.>:> w) v') Source # | |
Defined in Pandora.Paradigm.Schemes Methods (-|) :: a -> ((t <:<.>:> u) t' a -> b) -> (v <:<.>:> w) v' b Source # (|-) :: (t <:<.>:> u) t' a -> (a -> (v <:<.>:> w) v' b) -> b Source # phi :: ((t <:<.>:> u) t' a -> b) -> a -> (v <:<.>:> w) v' b Source # psi :: (a -> (v <:<.>:> w) v' b) -> (t <:<.>:> u) t' a -> b Source # eta :: a -> ((v <:<.>:> w) v' :. (t <:<.>:> u) t') := a Source # epsilon :: (((t <:<.>:> u) t' :. (v <:<.>:> w) v') := a) -> a Source # | |
(forall (u :: Type -> Type). Covariant u, Pointable t) => Liftable (UT Covariant Covariant t) Source # | |
Pointable t => Liftable (TU Covariant Covariant t :: (Type -> Type) -> Type -> Type) Source # | |
Extractable t => Lowerable (UT Covariant Covariant t) Source # | |
Extractable t => Lowerable (TU Covariant Covariant t :: (Type -> Type) -> Type -> Type) Source # | |
Covariant u => Covariant (UT Covariant Covariant Maybe u) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Maybe Methods (<$>) :: (a -> b) -> UT Covariant Covariant Maybe u a -> UT Covariant Covariant Maybe u b Source # comap :: (a -> b) -> UT Covariant Covariant Maybe u a -> UT Covariant Covariant Maybe u b Source # (<$) :: a -> UT Covariant Covariant Maybe u b -> UT Covariant Covariant Maybe u a Source # ($>) :: UT Covariant Covariant Maybe u a -> b -> UT Covariant Covariant Maybe u b Source # void :: UT Covariant Covariant Maybe u a -> UT Covariant Covariant Maybe u () Source # loeb :: UT Covariant Covariant Maybe u (a <-| UT Covariant Covariant Maybe u) -> UT Covariant Covariant Maybe u a Source # (<&>) :: UT Covariant Covariant Maybe u a -> (a -> b) -> UT Covariant Covariant Maybe u b Source # (<$$>) :: Covariant u0 => (a -> b) -> ((UT Covariant Covariant Maybe u :. u0) := a) -> (UT Covariant Covariant Maybe u :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((UT Covariant Covariant Maybe u :. (u0 :. v)) := a) -> (UT Covariant Covariant Maybe u :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((UT Covariant Covariant Maybe u :. (u0 :. (v :. w))) := a) -> (UT Covariant Covariant Maybe u :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => ((UT Covariant Covariant Maybe u :. u0) := a) -> (a -> b) -> (UT Covariant Covariant Maybe u :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => ((UT Covariant Covariant Maybe u :. (u0 :. v)) := a) -> (a -> b) -> (UT Covariant Covariant Maybe u :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((UT Covariant Covariant Maybe u :. (u0 :. (v :. w))) := a) -> (a -> b) -> (UT Covariant Covariant Maybe u :. (u0 :. (v :. w))) := b Source # | |
Covariant u => Covariant (UT Covariant Covariant (Conclusion e) u) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion Methods (<$>) :: (a -> b) -> UT Covariant Covariant (Conclusion e) u a -> UT Covariant Covariant (Conclusion e) u b Source # comap :: (a -> b) -> UT Covariant Covariant (Conclusion e) u a -> UT Covariant Covariant (Conclusion e) u b Source # (<$) :: a -> UT Covariant Covariant (Conclusion e) u b -> UT Covariant Covariant (Conclusion e) u a Source # ($>) :: UT Covariant Covariant (Conclusion e) u a -> b -> UT Covariant Covariant (Conclusion e) u b Source # void :: UT Covariant Covariant (Conclusion e) u a -> UT Covariant Covariant (Conclusion e) u () Source # loeb :: UT Covariant Covariant (Conclusion e) u (a <-| UT Covariant Covariant (Conclusion e) u) -> UT Covariant Covariant (Conclusion e) u a Source # (<&>) :: UT Covariant Covariant (Conclusion e) u a -> (a -> b) -> UT Covariant Covariant (Conclusion e) u b Source # (<$$>) :: Covariant u0 => (a -> b) -> ((UT Covariant Covariant (Conclusion e) u :. u0) := a) -> (UT Covariant Covariant (Conclusion e) u :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((UT Covariant Covariant (Conclusion e) u :. (u0 :. v)) := a) -> (UT Covariant Covariant (Conclusion e) u :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((UT Covariant Covariant (Conclusion e) u :. (u0 :. (v :. w))) := a) -> (UT Covariant Covariant (Conclusion e) u :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => ((UT Covariant Covariant (Conclusion e) u :. u0) := a) -> (a -> b) -> (UT Covariant Covariant (Conclusion e) u :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => ((UT Covariant Covariant (Conclusion e) u :. (u0 :. v)) := a) -> (a -> b) -> (UT Covariant Covariant (Conclusion e) u :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((UT Covariant Covariant (Conclusion e) u :. (u0 :. (v :. w))) := a) -> (a -> b) -> (UT Covariant Covariant (Conclusion e) u :. (u0 :. (v :. w))) := b Source # | |
(Pointable u, Bindable u) => Bindable (UT Covariant Covariant Maybe u) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Maybe Methods (>>=) :: UT Covariant Covariant Maybe u a -> (a -> UT Covariant Covariant Maybe u b) -> UT Covariant Covariant Maybe u b Source # (=<<) :: (a -> UT Covariant Covariant Maybe u b) -> UT Covariant Covariant Maybe u a -> UT Covariant Covariant Maybe u b Source # bind :: (a -> UT Covariant Covariant Maybe u b) -> UT Covariant Covariant Maybe u a -> UT Covariant Covariant Maybe u b Source # join :: ((UT Covariant Covariant Maybe u :. UT Covariant Covariant Maybe u) := a) -> UT Covariant Covariant Maybe u a Source # (>=>) :: (a -> UT Covariant Covariant Maybe u b) -> (b -> UT Covariant Covariant Maybe u c) -> a -> UT Covariant Covariant Maybe u c Source # (<=<) :: (b -> UT Covariant Covariant Maybe u c) -> (a -> UT Covariant Covariant Maybe u b) -> a -> UT Covariant Covariant Maybe u c Source # ($>>=) :: Covariant u0 => (a -> UT Covariant Covariant Maybe u b) -> ((u0 :. UT Covariant Covariant Maybe u) := a) -> (u0 :. UT Covariant Covariant Maybe u) := b Source # (<>>=) :: (UT Covariant Covariant Maybe u b -> c) -> (a -> UT Covariant Covariant Maybe u b) -> UT Covariant Covariant Maybe u a -> c Source # | |
(Pointable u, Bindable u) => Bindable (UT Covariant Covariant (Conclusion e) u) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion Methods (>>=) :: UT Covariant Covariant (Conclusion e) u a -> (a -> UT Covariant Covariant (Conclusion e) u b) -> UT Covariant Covariant (Conclusion e) u b Source # (=<<) :: (a -> UT Covariant Covariant (Conclusion e) u b) -> UT Covariant Covariant (Conclusion e) u a -> UT Covariant Covariant (Conclusion e) u b Source # bind :: (a -> UT Covariant Covariant (Conclusion e) u b) -> UT Covariant Covariant (Conclusion e) u a -> UT Covariant Covariant (Conclusion e) u b Source # join :: ((UT Covariant Covariant (Conclusion e) u :. UT Covariant Covariant (Conclusion e) u) := a) -> UT Covariant Covariant (Conclusion e) u a Source # (>=>) :: (a -> UT Covariant Covariant (Conclusion e) u b) -> (b -> UT Covariant Covariant (Conclusion e) u c) -> a -> UT Covariant Covariant (Conclusion e) u c Source # (<=<) :: (b -> UT Covariant Covariant (Conclusion e) u c) -> (a -> UT Covariant Covariant (Conclusion e) u b) -> a -> UT Covariant Covariant (Conclusion e) u c Source # ($>>=) :: Covariant u0 => (a -> UT Covariant Covariant (Conclusion e) u b) -> ((u0 :. UT Covariant Covariant (Conclusion e) u) := a) -> (u0 :. UT Covariant Covariant (Conclusion e) u) := b Source # (<>>=) :: (UT Covariant Covariant (Conclusion e) u b -> c) -> (a -> UT Covariant Covariant (Conclusion e) u b) -> UT Covariant Covariant (Conclusion e) u a -> c Source # | |
Applicative u => Applicative (UT Covariant Covariant Maybe u) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Maybe Methods (<*>) :: UT Covariant Covariant Maybe u (a -> b) -> UT Covariant Covariant Maybe u a -> UT Covariant Covariant Maybe u b Source # apply :: UT Covariant Covariant Maybe u (a -> b) -> UT Covariant Covariant Maybe u a -> UT Covariant Covariant Maybe u b Source # (*>) :: UT Covariant Covariant Maybe u a -> UT Covariant Covariant Maybe u b -> UT Covariant Covariant Maybe u b Source # (<*) :: UT Covariant Covariant Maybe u a -> UT Covariant Covariant Maybe u b -> UT Covariant Covariant Maybe u a Source # forever :: UT Covariant Covariant Maybe u a -> UT Covariant Covariant Maybe u b Source # (<**>) :: Applicative u0 => ((UT Covariant Covariant Maybe u :. u0) := (a -> b)) -> ((UT Covariant Covariant Maybe u :. u0) := a) -> (UT Covariant Covariant Maybe u :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => ((UT Covariant Covariant Maybe u :. (u0 :. v)) := (a -> b)) -> ((UT Covariant Covariant Maybe u :. (u0 :. v)) := a) -> (UT Covariant Covariant Maybe u :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => ((UT Covariant Covariant Maybe u :. (u0 :. (v :. w))) := (a -> b)) -> ((UT Covariant Covariant Maybe u :. (u0 :. (v :. w))) := a) -> (UT Covariant Covariant Maybe u :. (u0 :. (v :. w))) := b Source # | |
Applicative u => Applicative (UT Covariant Covariant (Conclusion e) u) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion Methods (<*>) :: UT Covariant Covariant (Conclusion e) u (a -> b) -> UT Covariant Covariant (Conclusion e) u a -> UT Covariant Covariant (Conclusion e) u b Source # apply :: UT Covariant Covariant (Conclusion e) u (a -> b) -> UT Covariant Covariant (Conclusion e) u a -> UT Covariant Covariant (Conclusion e) u b Source # (*>) :: UT Covariant Covariant (Conclusion e) u a -> UT Covariant Covariant (Conclusion e) u b -> UT Covariant Covariant (Conclusion e) u b Source # (<*) :: UT Covariant Covariant (Conclusion e) u a -> UT Covariant Covariant (Conclusion e) u b -> UT Covariant Covariant (Conclusion e) u a Source # forever :: UT Covariant Covariant (Conclusion e) u a -> UT Covariant Covariant (Conclusion e) u b Source # (<**>) :: Applicative u0 => ((UT Covariant Covariant (Conclusion e) u :. u0) := (a -> b)) -> ((UT Covariant Covariant (Conclusion e) u :. u0) := a) -> (UT Covariant Covariant (Conclusion e) u :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => ((UT Covariant Covariant (Conclusion e) u :. (u0 :. v)) := (a -> b)) -> ((UT Covariant Covariant (Conclusion e) u :. (u0 :. v)) := a) -> (UT Covariant Covariant (Conclusion e) u :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => ((UT Covariant Covariant (Conclusion e) u :. (u0 :. (v :. w))) := (a -> b)) -> ((UT Covariant Covariant (Conclusion e) u :. (u0 :. (v :. w))) := a) -> (UT Covariant Covariant (Conclusion e) u :. (u0 :. (v :. w))) := b Source # | |
Pointable u => Pointable (UT Covariant Covariant Maybe u) Source # | |
Pointable u => Pointable (UT Covariant Covariant (Conclusion e) u) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion | |
Monad u => Monad (UT Covariant Covariant Maybe u) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Maybe | |
Monad u => Monad (UT Covariant Covariant (Conclusion e) u) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion | |
type Nonempty Stack Source # | |
Defined in Pandora.Paradigm.Structure.Stack | |
type Nonempty Rose Source # | |
Defined in Pandora.Paradigm.Structure.Rose | |
type Nonempty Binary Source # | |
Defined in Pandora.Paradigm.Structure.Binary | |
type Zipper Stack Source # | |
type Substructural (Left :: Type -> Wye Type) Binary a Source # | |
Defined in Pandora.Paradigm.Structure.Binary | |
type Substructural (Right :: Type -> Wye Type) Binary a Source # | |
Defined in Pandora.Paradigm.Structure.Binary | |
type Substructural (Just :: Type -> Maybe Type) Rose a Source # | |
Defined in Pandora.Paradigm.Structure.Rose | |
type Focusing (Root :: Type -> Location Type) Rose a Source # | |
type Focusing (Root :: Type -> Location Type) Binary a Source # | |
type Focusing (Head :: Type -> Location Type) Stack a Source # | |
type Substructural (Just :: Type -> Maybe Type) (Construction Stack) a Source # | |
Defined in Pandora.Paradigm.Structure.Rose type Substructural (Just :: Type -> Maybe Type) (Construction Stack) a = (Stack :. Construction Stack) := a | |
type Focusing (Root :: Type -> Location Type) (Construction Stack) a Source # | |
Defined in Pandora.Paradigm.Structure.Rose |
(.|..) :: (Category v, Covariant (v a)) => v c d -> ((v a :. v b) := c) -> (v a :. v b) := d Source #