pandora-0.3.4: A box of patterns and paradigms
Safe HaskellSafe-Inferred
LanguageHaskell2010

Pandora.Paradigm.Schemes.TUT

Documentation

newtype TUT ct ct' cu t t' u a Source #

Constructors

TUT ((t :. (u :. t')) := a) 

Instances

Instances details
(Covariant t, Covariant t', Covariant u) => Covariant ((t <:<.>:> t') := u) Source # 
Instance details

Defined in Pandora.Paradigm.Schemes.TUT

Methods

(<$>) :: (a -> b) -> ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b Source #

comap :: (a -> b) -> ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b Source #

(<$) :: a -> ((t <:<.>:> t') := u) b -> ((t <:<.>:> t') := u) a Source #

($>) :: ((t <:<.>:> t') := u) a -> b -> ((t <:<.>:> t') := u) b Source #

void :: ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) () Source #

loeb :: ((t <:<.>:> t') := u) (a <-| ((t <:<.>:> t') := u)) -> ((t <:<.>:> t') := u) a Source #

(<&>) :: ((t <:<.>:> t') := u) a -> (a -> b) -> ((t <:<.>:> t') := u) b Source #

(<$$>) :: Covariant u0 => (a -> b) -> ((((t <:<.>:> t') := u) :. u0) := a) -> (((t <:<.>:> t') := u) :. u0) := b Source #

(<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((((t <:<.>:> t') := u) :. (u0 :. v)) := a) -> (((t <:<.>:> t') := u) :. (u0 :. v)) := b Source #

(<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((((t <:<.>:> t') := u) :. (u0 :. (v :. w))) := a) -> (((t <:<.>:> t') := u) :. (u0 :. (v :. w))) := b Source #

(<&&>) :: Covariant u0 => ((((t <:<.>:> t') := u) :. u0) := a) -> (a -> b) -> (((t <:<.>:> t') := u) :. u0) := b Source #

(<&&&>) :: (Covariant u0, Covariant v) => ((((t <:<.>:> t') := u) :. (u0 :. v)) := a) -> (a -> b) -> (((t <:<.>:> t') := u) :. (u0 :. v)) := b Source #

(<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((((t <:<.>:> t') := u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> (((t <:<.>:> t') := u) :. (u0 :. (v :. w))) := b Source #

(Adjoint t' t, Bindable u) => Bindable ((t <:<.>:> t') := u) Source # 
Instance details

Defined in Pandora.Paradigm.Schemes.TUT

Methods

(>>=) :: ((t <:<.>:> t') := u) a -> (a -> ((t <:<.>:> t') := u) b) -> ((t <:<.>:> t') := u) b Source #

(=<<) :: (a -> ((t <:<.>:> t') := u) b) -> ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b Source #

bind :: (a -> ((t <:<.>:> t') := u) b) -> ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b Source #

join :: ((((t <:<.>:> t') := u) :. ((t <:<.>:> t') := u)) := a) -> ((t <:<.>:> t') := u) a Source #

(>=>) :: (a -> ((t <:<.>:> t') := u) b) -> (b -> ((t <:<.>:> t') := u) c) -> a -> ((t <:<.>:> t') := u) c Source #

(<=<) :: (b -> ((t <:<.>:> t') := u) c) -> (a -> ((t <:<.>:> t') := u) b) -> a -> ((t <:<.>:> t') := u) c Source #

($>>=) :: Covariant u0 => ((u0 :. ((t <:<.>:> t') := u)) := a) -> (a -> ((t <:<.>:> t') := u) b) -> (u0 :. ((t <:<.>:> t') := u)) := b Source #

(<>>=) :: (((t <:<.>:> t') := u) b -> c) -> (a -> ((t <:<.>:> t') := u) b) -> ((t <:<.>:> t') := u) a -> c Source #

(Adjoint t' t, Bindable u) => Applicative ((t <:<.>:> t') := u) Source # 
Instance details

Defined in Pandora.Paradigm.Schemes.TUT

Methods

(<*>) :: ((t <:<.>:> t') := u) (a -> b) -> ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b Source #

apply :: ((t <:<.>:> t') := u) (a -> b) -> ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b Source #

(*>) :: ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b -> ((t <:<.>:> t') := u) b Source #

(<*) :: ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b -> ((t <:<.>:> t') := u) a Source #

forever :: ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b Source #

(<**>) :: Applicative u0 => ((((t <:<.>:> t') := u) :. u0) := (a -> b)) -> ((((t <:<.>:> t') := u) :. u0) := a) -> (((t <:<.>:> t') := u) :. u0) := b Source #

(<***>) :: (Applicative u0, Applicative v) => ((((t <:<.>:> t') := u) :. (u0 :. v)) := (a -> b)) -> ((((t <:<.>:> t') := u) :. (u0 :. v)) := a) -> (((t <:<.>:> t') := u) :. (u0 :. v)) := b Source #

(<****>) :: (Applicative u0, Applicative v, Applicative w) => ((((t <:<.>:> t') := u) :. (u0 :. (v :. w))) := (a -> b)) -> ((((t <:<.>:> t') := u) :. (u0 :. (v :. w))) := a) -> (((t <:<.>:> t') := u) :. (u0 :. (v :. w))) := b Source #

(Applicative t, Covariant t', Alternative u) => Alternative ((t <:<.>:> t') := u) Source # 
Instance details

Defined in Pandora.Paradigm.Schemes.TUT

Methods

(<+>) :: ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) a Source #

alter :: ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) a Source #

(Pointable t, Applicative t, Covariant t', Avoidable u) => Avoidable ((t <:<.>:> t') := u) Source # 
Instance details

Defined in Pandora.Paradigm.Schemes.TUT

Methods

empty :: ((t <:<.>:> t') := u) a Source #

(Adjoint t' t, Extendable u) => Extendable ((t' <:<.>:> t) := u) Source # 
Instance details

Defined in Pandora.Paradigm.Schemes.TUT

Methods

(=>>) :: ((t' <:<.>:> t) := u) a -> (((t' <:<.>:> t) := u) a -> b) -> ((t' <:<.>:> t) := u) b Source #

(<<=) :: (((t' <:<.>:> t) := u) a -> b) -> ((t' <:<.>:> t) := u) a -> ((t' <:<.>:> t) := u) b Source #

extend :: (((t' <:<.>:> t) := u) a -> b) -> ((t' <:<.>:> t) := u) a -> ((t' <:<.>:> t) := u) b Source #

duplicate :: ((t' <:<.>:> t) := u) a -> (((t' <:<.>:> t) := u) :. ((t' <:<.>:> t) := u)) := a Source #

(=<=) :: (((t' <:<.>:> t) := u) b -> c) -> (((t' <:<.>:> t) := u) a -> b) -> ((t' <:<.>:> t) := u) a -> c Source #

(=>=) :: (((t' <:<.>:> t) := u) a -> b) -> (((t' <:<.>:> t) := u) b -> c) -> ((t' <:<.>:> t) := u) a -> c Source #

($=>>) :: Covariant u0 => ((u0 :. ((t' <:<.>:> t) := u)) := a) -> (((t' <:<.>:> t) := u) a -> b) -> (u0 :. ((t' <:<.>:> t) := u)) := b Source #

(<<=$) :: Covariant u0 => ((u0 :. ((t' <:<.>:> t) := u)) := a) -> (((t' <:<.>:> t) := u) a -> b) -> (u0 :. ((t' <:<.>:> t) := u)) := b Source #

(Pointable u, Adjoint t' t) => Pointable ((t <:<.>:> t') := u) Source # 
Instance details

Defined in Pandora.Paradigm.Schemes.TUT

Methods

point :: a |-> ((t <:<.>:> t') := u) Source #

(Adjoint t t', Extractable u) => Extractable ((t <:<.>:> t') := u) Source # 
Instance details

Defined in Pandora.Paradigm.Schemes.TUT

Methods

extract :: a <-| ((t <:<.>:> t') := u) Source #

(Adjoint t' t, Distributive t) => Liftable (t <:<.>:> t') Source # 
Instance details

Defined in Pandora.Paradigm.Schemes.TUT

Methods

lift :: forall (u :: Type -> Type). Covariant u => u ~> (t <:<.>:> t') u Source #

(Adjoint t t', Distributive t') => Lowerable (t <:<.>:> t') Source # 
Instance details

Defined in Pandora.Paradigm.Schemes.TUT

Methods

lower :: forall (u :: Type -> Type). Covariant u => (t <:<.>:> t') u ~> u Source #

(Covariant ((t <:<.>:> u) t'), Covariant ((v <:<.>:> w) v'), Adjoint t w, Adjoint t' v', Adjoint t v, Adjoint u v, Adjoint v' t') => Adjoint ((t <:<.>:> u) t') ((v <:<.>:> w) v') Source # 
Instance details

Defined in Pandora.Paradigm.Schemes

Methods

(-|) :: a -> ((t <:<.>:> u) t' a -> b) -> (v <:<.>:> w) v' b Source #

(|-) :: (t <:<.>:> u) t' a -> (a -> (v <:<.>:> w) v' b) -> b Source #

phi :: ((t <:<.>:> u) t' a -> b) -> a -> (v <:<.>:> w) v' b Source #

psi :: (a -> (v <:<.>:> w) v' b) -> (t <:<.>:> u) t' a -> b Source #

eta :: a -> ((v <:<.>:> w) v' :. (t <:<.>:> u) t') := a Source #

epsilon :: (((t <:<.>:> u) t' :. (v <:<.>:> w) v') := a) -> a Source #

(-|$) :: Covariant v0 => v0 a -> ((t <:<.>:> u) t' a -> b) -> v0 ((v <:<.>:> w) v' b) Source #

($|-) :: Covariant v0 => v0 ((t <:<.>:> u) t' a) -> (a -> (v <:<.>:> w) v' b) -> v0 b Source #

Interpreted (TUT ct ct' cu t t' u) Source # 
Instance details

Defined in Pandora.Paradigm.Schemes.TUT

Associated Types

type Primary (TUT ct ct' cu t t' u) a Source #

Methods

run :: TUT ct ct' cu t t' u a -> Primary (TUT ct ct' cu t t' u) a Source #

unite :: Primary (TUT ct ct' cu t t' u) a -> TUT ct ct' cu t t' u a Source #

type Primary (TUT ct ct' cu t t' u) a Source # 
Instance details

Defined in Pandora.Paradigm.Schemes.TUT

type Primary (TUT ct ct' cu t t' u) a = (t :. (u :. t')) := a