Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Documentation
newtype TUT ct ct' cu t t' u a Source #
Instances
(Covariant t, Covariant t', Covariant u) => Covariant ((t <:<.>:> t') := u) Source # | |
Defined in Pandora.Paradigm.Schemes.TUT (<$>) :: (a -> b) -> ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b Source # comap :: (a -> b) -> ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b Source # (<$) :: a -> ((t <:<.>:> t') := u) b -> ((t <:<.>:> t') := u) a Source # ($>) :: ((t <:<.>:> t') := u) a -> b -> ((t <:<.>:> t') := u) b Source # void :: ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) () Source # loeb :: ((t <:<.>:> t') := u) (a <-| ((t <:<.>:> t') := u)) -> ((t <:<.>:> t') := u) a Source # (<&>) :: ((t <:<.>:> t') := u) a -> (a -> b) -> ((t <:<.>:> t') := u) b Source # (<$$>) :: Covariant u0 => (a -> b) -> ((((t <:<.>:> t') := u) :. u0) := a) -> (((t <:<.>:> t') := u) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((((t <:<.>:> t') := u) :. (u0 :. v)) := a) -> (((t <:<.>:> t') := u) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((((t <:<.>:> t') := u) :. (u0 :. (v :. w))) := a) -> (((t <:<.>:> t') := u) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => ((((t <:<.>:> t') := u) :. u0) := a) -> (a -> b) -> (((t <:<.>:> t') := u) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => ((((t <:<.>:> t') := u) :. (u0 :. v)) := a) -> (a -> b) -> (((t <:<.>:> t') := u) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((((t <:<.>:> t') := u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> (((t <:<.>:> t') := u) :. (u0 :. (v :. w))) := b Source # | |
(Adjoint t' t, Bindable u) => Bindable ((t <:<.>:> t') := u) Source # | |
Defined in Pandora.Paradigm.Schemes.TUT (>>=) :: ((t <:<.>:> t') := u) a -> (a -> ((t <:<.>:> t') := u) b) -> ((t <:<.>:> t') := u) b Source # (=<<) :: (a -> ((t <:<.>:> t') := u) b) -> ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b Source # bind :: (a -> ((t <:<.>:> t') := u) b) -> ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b Source # join :: ((((t <:<.>:> t') := u) :. ((t <:<.>:> t') := u)) := a) -> ((t <:<.>:> t') := u) a Source # (>=>) :: (a -> ((t <:<.>:> t') := u) b) -> (b -> ((t <:<.>:> t') := u) c) -> a -> ((t <:<.>:> t') := u) c Source # (<=<) :: (b -> ((t <:<.>:> t') := u) c) -> (a -> ((t <:<.>:> t') := u) b) -> a -> ((t <:<.>:> t') := u) c Source # ($>>=) :: Covariant u0 => ((u0 :. ((t <:<.>:> t') := u)) := a) -> (a -> ((t <:<.>:> t') := u) b) -> (u0 :. ((t <:<.>:> t') := u)) := b Source # (<>>=) :: (((t <:<.>:> t') := u) b -> c) -> (a -> ((t <:<.>:> t') := u) b) -> ((t <:<.>:> t') := u) a -> c Source # | |
(Adjoint t' t, Bindable u) => Applicative ((t <:<.>:> t') := u) Source # | |
Defined in Pandora.Paradigm.Schemes.TUT (<*>) :: ((t <:<.>:> t') := u) (a -> b) -> ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b Source # apply :: ((t <:<.>:> t') := u) (a -> b) -> ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b Source # (*>) :: ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b -> ((t <:<.>:> t') := u) b Source # (<*) :: ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b -> ((t <:<.>:> t') := u) a Source # forever :: ((t <:<.>:> t') := u) a -> ((t <:<.>:> t') := u) b Source # (<**>) :: Applicative u0 => ((((t <:<.>:> t') := u) :. u0) := (a -> b)) -> ((((t <:<.>:> t') := u) :. u0) := a) -> (((t <:<.>:> t') := u) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => ((((t <:<.>:> t') := u) :. (u0 :. v)) := (a -> b)) -> ((((t <:<.>:> t') := u) :. (u0 :. v)) := a) -> (((t <:<.>:> t') := u) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => ((((t <:<.>:> t') := u) :. (u0 :. (v :. w))) := (a -> b)) -> ((((t <:<.>:> t') := u) :. (u0 :. (v :. w))) := a) -> (((t <:<.>:> t') := u) :. (u0 :. (v :. w))) := b Source # | |
(Applicative t, Covariant t', Alternative u) => Alternative ((t <:<.>:> t') := u) Source # | |
(Pointable t, Applicative t, Covariant t', Avoidable u) => Avoidable ((t <:<.>:> t') := u) Source # | |
(Adjoint t' t, Extendable u) => Extendable ((t' <:<.>:> t) := u) Source # | |
Defined in Pandora.Paradigm.Schemes.TUT (=>>) :: ((t' <:<.>:> t) := u) a -> (((t' <:<.>:> t) := u) a -> b) -> ((t' <:<.>:> t) := u) b Source # (<<=) :: (((t' <:<.>:> t) := u) a -> b) -> ((t' <:<.>:> t) := u) a -> ((t' <:<.>:> t) := u) b Source # extend :: (((t' <:<.>:> t) := u) a -> b) -> ((t' <:<.>:> t) := u) a -> ((t' <:<.>:> t) := u) b Source # duplicate :: ((t' <:<.>:> t) := u) a -> (((t' <:<.>:> t) := u) :. ((t' <:<.>:> t) := u)) := a Source # (=<=) :: (((t' <:<.>:> t) := u) b -> c) -> (((t' <:<.>:> t) := u) a -> b) -> ((t' <:<.>:> t) := u) a -> c Source # (=>=) :: (((t' <:<.>:> t) := u) a -> b) -> (((t' <:<.>:> t) := u) b -> c) -> ((t' <:<.>:> t) := u) a -> c Source # ($=>>) :: Covariant u0 => ((u0 :. ((t' <:<.>:> t) := u)) := a) -> (((t' <:<.>:> t) := u) a -> b) -> (u0 :. ((t' <:<.>:> t) := u)) := b Source # (<<=$) :: Covariant u0 => ((u0 :. ((t' <:<.>:> t) := u)) := a) -> (((t' <:<.>:> t) := u) a -> b) -> (u0 :. ((t' <:<.>:> t) := u)) := b Source # | |
(Pointable u, Adjoint t' t) => Pointable ((t <:<.>:> t') := u) Source # | |
(Adjoint t t', Extractable u) => Extractable ((t <:<.>:> t') := u) Source # | |
(Adjoint t' t, Distributive t) => Liftable (t <:<.>:> t') Source # | |
(Adjoint t t', Distributive t') => Lowerable (t <:<.>:> t') Source # | |
(Covariant ((t <:<.>:> u) t'), Covariant ((v <:<.>:> w) v'), Adjoint t w, Adjoint t' v', Adjoint t v, Adjoint u v, Adjoint v' t') => Adjoint ((t <:<.>:> u) t') ((v <:<.>:> w) v') Source # | |
Defined in Pandora.Paradigm.Schemes (-|) :: a -> ((t <:<.>:> u) t' a -> b) -> (v <:<.>:> w) v' b Source # (|-) :: (t <:<.>:> u) t' a -> (a -> (v <:<.>:> w) v' b) -> b Source # phi :: ((t <:<.>:> u) t' a -> b) -> a -> (v <:<.>:> w) v' b Source # psi :: (a -> (v <:<.>:> w) v' b) -> (t <:<.>:> u) t' a -> b Source # eta :: a -> ((v <:<.>:> w) v' :. (t <:<.>:> u) t') := a Source # epsilon :: (((t <:<.>:> u) t' :. (v <:<.>:> w) v') := a) -> a Source # (-|$) :: Covariant v0 => v0 a -> ((t <:<.>:> u) t' a -> b) -> v0 ((v <:<.>:> w) v' b) Source # ($|-) :: Covariant v0 => v0 ((t <:<.>:> u) t' a) -> (a -> (v <:<.>:> w) v' b) -> v0 b Source # | |
Interpreted (TUT ct ct' cu t t' u) Source # | |
type Primary (TUT ct ct' cu t t' u) a Source # | |