Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Documentation
class Adaptable t u where Source #
Instances
Covariant t => Adaptable (t :: Type -> Type) (t :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h)))))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> (f :> h))))))), Lifting u (Schematic Monad v (w :> (x :> (y :> (z :> (f :> h)))))), Lifting v (Schematic Monad w (x :> (y :> (z :> (f :> h))))), Lifting w (Schematic Monad x (y :> (z :> (f :> h)))), Lifting x (Schematic Monad y (z :> (f :> h))), Lifting y (Schematic Monad z (f :> h)), Lifting z (Schematic Monad f h), Wrappable f h) => Adaptable (f :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h))))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h)))))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> (f :> h))))))), Lifting u (Schematic Monad v (w :> (x :> (y :> (z :> (f :> h)))))), Lifting v (Schematic Monad w (x :> (y :> (z :> (f :> h))))), Lifting w (Schematic Monad x (y :> (z :> (f :> h)))), Lifting x (Schematic Monad y (z :> (f :> h))), Lifting y (Schematic Monad z (f :> h)), Lifting z (Schematic Monad f h), Lifting f h) => Adaptable (h :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h))))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> f))))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> f)))))), Lifting u (Schematic Monad v (w :> (x :> (y :> (z :> f))))), Lifting v (Schematic Monad w (x :> (y :> (z :> f)))), Lifting w (Schematic Monad x (y :> (z :> f))), Lifting x (Schematic Monad y (z :> f)), Lifting y (Schematic Monad z f), Wrappable z f) => Adaptable (z :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> f)))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> f))))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> f)))))), Lifting u (Schematic Monad v (w :> (x :> (y :> (z :> f))))), Lifting v (Schematic Monad w (x :> (y :> (z :> f)))), Lifting w (Schematic Monad x (y :> (z :> f))), Lifting x (Schematic Monad y (z :> f)), Lifting y (Schematic Monad z f), Lifting z f) => Adaptable (f :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> f)))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> z)))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Lifting u (Schematic Monad v (w :> (x :> (y :> z)))), Lifting v (Schematic Monad w (x :> (y :> z))), Lifting w (Schematic Monad x (y :> z)), Lifting x (Schematic Monad y z), Wrappable y z) => Adaptable (y :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> z))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> (y :> z)))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Lifting u (Schematic Monad v (w :> (x :> (y :> z)))), Lifting v (Schematic Monad w (x :> (y :> z))), Lifting w (Schematic Monad x (y :> z)), Lifting x (Schematic Monad y z), Lifting y z) => Adaptable (z :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> z))))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> y))))), Lifting t (Schematic Monad u (v :> (w :> (x :> y)))), Lifting u (Schematic Monad v (w :> (x :> y))), Lifting v (Schematic Monad w (x :> y)), Lifting w (Schematic Monad x y), Wrappable x y) => Adaptable (x :: Type -> Type) (t :> (u :> (v :> (w :> (x :> y)))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> (x :> y))))), Lifting t (Schematic Monad u (v :> (w :> (x :> y)))), Lifting u (Schematic Monad v (w :> (x :> y))), Lifting v (Schematic Monad w (x :> y)), Lifting w (Schematic Monad x y), Lifting x y) => Adaptable (y :: Type -> Type) (t :> (u :> (v :> (w :> (x :> y)))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> x)))), Lifting t (Schematic Monad u (v :> (w :> x))), Lifting u (Schematic Monad v (w :> x)), Lifting v (Schematic Monad w x), Wrappable w x) => Adaptable (w :: Type -> Type) (t :> (u :> (v :> (w :> x))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> (w :> x)))), Lifting t (Schematic Monad u (v :> (w :> x))), Lifting u (Schematic Monad v (w :> x)), Lifting v (Schematic Monad w x), Lifting w x) => Adaptable (x :: Type -> Type) (t :> (u :> (v :> (w :> x))) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> w))), Lifting t (Schematic Monad u v), Lifting t (Schematic Monad u (v :> w)), Lifting u (Schematic Monad v w), Lifting v w) => Adaptable (w :: Type -> Type) (t :> (u :> (v :> w)) :: Type -> Type) Source # | |
(Covariant (t :> (u :> (v :> w))), Liftable (Schematic Monad t), Lifting t (Schematic Monad u (v :> w)), Lifting u (Schematic Monad v w), Wrappable v w) => Adaptable (v :: Type -> Type) (t :> (u :> (v :> w)) :: Type -> Type) Source # | |
(Covariant (t :> (u :> v)), Lifting t (Schematic Monad u v), Lifting u v) => Adaptable (v :: Type -> Type) (t :> (u :> v) :: Type -> Type) Source # | |
(Covariant (t :> (u :> v)), Liftable (Schematic Monad t), Covariant (Schematic Monad u v), Wrappable u v) => Adaptable (u :: Type -> Type) (t :> (u :> v) :: Type -> Type) Source # | |
(Covariant (t :> u), Wrappable t u) => Adaptable (t :: Type -> Type) (t :> u :: Type -> Type) Source # | |
(Covariant (t :> u), Lifting t u) => Adaptable (u :: Type -> Type) (t :> u :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< (y :< (z :< (f :< h)))))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< (y :< (z :< (f :< h))))))), Lowering u (Schematic Comonad v (w :< (x :< (y :< (z :< (f :< h)))))), Lowering v (Schematic Comonad w (x :< (y :< (z :< (f :< h))))), Lowering w (Schematic Comonad x (y :< (z :< (f :< h)))), Lowering x (Schematic Comonad y (z :< (f :< h))), Lowering y (Schematic Comonad z (f :< h)), Lowering z (Schematic Comonad f h), Bringable f h) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< (z :< (f :< h))))))) :: Type -> Type) (f :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< (y :< (z :< (f :< h)))))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< (y :< (z :< (f :< h))))))), Lowering u (Schematic Comonad v (w :< (x :< (y :< (z :< (f :< h)))))), Lowering v (Schematic Comonad w (x :< (y :< (z :< (f :< h))))), Lowering w (Schematic Comonad x (y :< (z :< (f :< h)))), Lowering x (Schematic Comonad y (z :< (f :< h))), Lowering y (Schematic Comonad z (f :< h)), Lowering z (Schematic Comonad f h), Lowering f h) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< (z :< (f :< h))))))) :: Type -> Type) (h :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< (y :< (z :< f))))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< (y :< (z :< f)))))), Lowering u (Schematic Comonad v (w :< (x :< (y :< (z :< f))))), Lowering v (Schematic Comonad w (x :< (y :< (z :< f)))), Lowering w (Schematic Comonad x (y :< (z :< f))), Lowering x (Schematic Comonad y (z :< f)), Lowering y (Schematic Comonad z f), Bringable z f) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< (z :< f)))))) :: Type -> Type) (z :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< (y :< (z :< f))))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< (y :< (z :< f)))))), Lowering u (Schematic Comonad v (w :< (x :< (y :< (z :< f))))), Lowering v (Schematic Comonad w (x :< (y :< (z :< f)))), Lowering w (Schematic Comonad x (y :< (z :< f))), Lowering x (Schematic Comonad y (z :< f)), Lowering y (Schematic Comonad z f), Lowering z f) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< (z :< f)))))) :: Type -> Type) (f :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< (y :< z)))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< (y :< z))))), Lowering u (Schematic Comonad v (w :< (x :< (y :< z)))), Lowering v (Schematic Comonad w (x :< (y :< z))), Lowering w (Schematic Comonad x (y :< z)), Lowering x (Schematic Comonad y z), Bringable y z) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< z))))) :: Type -> Type) (y :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< (y :< z)))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< (y :< z))))), Lowering u (Schematic Comonad v (w :< (x :< (y :< z)))), Lowering v (Schematic Comonad w (x :< (y :< z))), Lowering w (Schematic Comonad x (y :< z)), Lowering x (Schematic Comonad y z), Lowering y z) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< z))))) :: Type -> Type) (z :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< y))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< y)))), Lowering u (Schematic Comonad v (w :< (x :< y))), Lowering v (Schematic Comonad w (x :< y)), Lowering w (Schematic Comonad x y), Bringable x y) => Adaptable (t :< (u :< (v :< (w :< (x :< y)))) :: Type -> Type) (x :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< (x :< y))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< y)))), Lowering u (Schematic Comonad v (w :< (x :< y))), Lowering v (Schematic Comonad w (x :< y)), Lowering w (Schematic Comonad x y), Lowering x y) => Adaptable (t :< (u :< (v :< (w :< (x :< y)))) :: Type -> Type) (y :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< x)))), Lowering t (Schematic Comonad u (v :< (w :< x))), Lowering u (Schematic Comonad v (w :< x)), Lowering v (Schematic Comonad w x), Bringable w x) => Adaptable (t :< (u :< (v :< (w :< x))) :: Type -> Type) (w :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< (w :< x)))), Lowering t (Schematic Comonad u (v :< (w :< x))), Lowering u (Schematic Comonad v (w :< x)), Lowering v (Schematic Comonad w x), Lowering w x) => Adaptable (t :< (u :< (v :< (w :< x))) :: Type -> Type) (x :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< w))), Lowering t (Schematic Comonad u v), Lowering t (Schematic Comonad u (v :< w)), Lowering u (Schematic Comonad v w), Lowering v w) => Adaptable (t :< (u :< (v :< w)) :: Type -> Type) (w :: Type -> Type) Source # | |
(Covariant (t :< (u :< (v :< w))), Lowering t (Schematic Comonad u (v :< w)), Lowering u (Schematic Comonad v w), Bringable v w) => Adaptable (t :< (u :< (v :< w)) :: Type -> Type) (v :: Type -> Type) Source # | |
(Covariant (t :< (u :< v)), Lowering t (Schematic Comonad u v), Lowering u v) => Adaptable (t :< (u :< v) :: Type -> Type) (v :: Type -> Type) Source # | |
(Covariant (t :< (u :< v)), Lowering t (Schematic Comonad u v), Bringable u v) => Adaptable (t :< (u :< v) :: Type -> Type) (u :: Type -> Type) Source # | |
(Covariant (t :< u), Bringable t u) => Adaptable (t :< u :: Type -> Type) (t :: Type -> Type) Source # | |
(Covariant (t :> u), Lowering t u) => Adaptable (t :< u :: Type -> Type) (u :: Type -> Type) Source # | |
(Covariant u, Covariant v, Covariant w, Covariant x, Covariant y, Covariant z, Covariant f, Covariant h, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad u (v :> (w :> (x :> y)))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> (z :> f)))))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> (z :> (f :> h))))))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad v (w :> (x :> y))), Covariant (Schematic Monad v (w :> (x :> (y :> z)))), Covariant (Schematic Monad v (w :> (x :> (y :> (z :> f))))), Covariant (Schematic Monad v (w :> (x :> (y :> (z :> (f :> h)))))), Covariant (Schematic Monad w (x :> y)), Covariant (Schematic Monad w (x :> (y :> z))), Covariant (Schematic Monad w (x :> (y :> (z :> f)))), Covariant (Schematic Monad w (x :> (y :> (z :> (f :> h))))), Covariant (Schematic Monad x y), Covariant (Schematic Monad x (y :> z)), Covariant (Schematic Monad x (y :> (z :> f))), Covariant (Schematic Monad x (y :> (z :> (f :> h)))), Covariant (Schematic Monad y z), Covariant (Schematic Monad y (z :> f)), Covariant (Schematic Monad y (z :> (f :> h))), Covariant (Schematic Monad z f), Covariant (Schematic Monad z (f :> h)), Covariant (Schematic Monad f h), Hoistable ((:>) (t :> (u :> (v :> w)))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Hoistable (Schematic Monad x), Hoistable (Schematic Monad y), Hoistable (Schematic Monad z), Hoistable (Schematic Monad f), Adaptable h h') => Adaptable (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h))))))) :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h'))))))) :: Type -> Type) Source # | |
(Covariant u, Covariant v, Covariant w, Covariant x, Covariant y, Covariant z, Covariant f, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad u (v :> (w :> (x :> y)))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> (z :> f)))))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad v (w :> (x :> y))), Covariant (Schematic Monad v (w :> (x :> (y :> z)))), Covariant (Schematic Monad v (w :> (x :> (y :> (z :> f))))), Covariant (Schematic Monad w (x :> y)), Covariant (Schematic Monad w (x :> (y :> z))), Covariant (Schematic Monad w (x :> (y :> (z :> f)))), Covariant (Schematic Monad x y), Covariant (Schematic Monad x (y :> z)), Covariant (Schematic Monad x (y :> (z :> f))), Covariant (Schematic Monad y z), Covariant (Schematic Monad y (z :> f)), Covariant (Schematic Monad z f), Hoistable ((:>) (t :> (u :> (v :> w)))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Hoistable (Schematic Monad x), Hoistable (Schematic Monad y), Hoistable (Schematic Monad z), Adaptable f f') => Adaptable (t :> (u :> (v :> (w :> (x :> (y :> (z :> f)))))) :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> f')))))) :: Type -> Type) Source # | |
(Covariant u, Covariant v, Covariant w, Covariant x, Covariant y, Covariant z, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad u (v :> (w :> (x :> y)))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad v (w :> (x :> y))), Covariant (Schematic Monad v (w :> (x :> (y :> z)))), Covariant (Schematic Monad w (x :> y)), Covariant (Schematic Monad w (x :> (y :> z))), Covariant (Schematic Monad x y), Covariant (Schematic Monad x (y :> z)), Covariant (Schematic Monad y z), Hoistable ((:>) (t :> (u :> (v :> w)))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Hoistable (Schematic Monad x), Hoistable (Schematic Monad y), Adaptable z z') => Adaptable (t :> (u :> (v :> (w :> (x :> (y :> z))))) :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> z'))))) :: Type -> Type) Source # | |
(Covariant u, Covariant v, Covariant w, Covariant x, Covariant y, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad u (v :> (w :> (x :> y)))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad v (w :> (x :> y))), Covariant (Schematic Monad w (x :> y)), Covariant (Schematic Monad x y), Hoistable ((:>) (t :> (u :> (v :> w)))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Hoistable (Schematic Monad x), Adaptable y y') => Adaptable (t :> (u :> (v :> (w :> (x :> y)))) :: Type -> Type) (t :> (u :> (v :> (w :> (x :> y')))) :: Type -> Type) Source # | |
(Covariant u, Covariant v, Covariant w, Covariant x, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad w x), Hoistable ((:>) (t :> (u :> v))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Adaptable x x') => Adaptable (t :> (u :> (v :> (w :> x))) :: Type -> Type) (t :> (u :> (v :> (w :> x'))) :: Type -> Type) Source # | |
(Covariant u, Covariant v, Covariant w, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad v w), Hoistable ((:>) (t :> (u :> v))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Adaptable w w') => Adaptable (t :> (u :> (v :> w)) :: Type -> Type) (t :> (u :> (v :> w')) :: Type -> Type) Source # | |
(Covariant u, Covariant v, Covariant (Schematic Monad u v), Hoistable ((:>) (t :> u)), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Adaptable v v') => Adaptable (t :> (u :> v) :: Type -> Type) (t :> (u :> v') :: Type -> Type) Source # | |
(Covariant u, Hoistable ((:>) t), Adaptable u u') => Adaptable (t :> u :: Type -> Type) (t :> u' :: Type -> Type) Source # | |
type Bringable t u = (Transformer Comonad t, Extractable u) Source #