| Safe Haskell | Safe-Inferred |
|---|---|
| Language | Haskell2010 |
Pandora.Paradigm.Controlflow.Effect.Adaptable
Documentation
class Adaptable t u where Source #
Instances
| Covariant t => Adaptable (t :: Type -> Type) (t :: Type -> Type) Source # | |
| (Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h)))))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> (f :> h))))))), Lifting u (Schematic Monad v (w :> (x :> (y :> (z :> (f :> h)))))), Lifting v (Schematic Monad w (x :> (y :> (z :> (f :> h))))), Lifting w (Schematic Monad x (y :> (z :> (f :> h)))), Lifting x (Schematic Monad y (z :> (f :> h))), Lifting y (Schematic Monad z (f :> h)), Lifting z (Schematic Monad f h), Wrappable f h) => Adaptable (f :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h))))))) :: Type -> Type) Source # | |
| (Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h)))))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> (f :> h))))))), Lifting u (Schematic Monad v (w :> (x :> (y :> (z :> (f :> h)))))), Lifting v (Schematic Monad w (x :> (y :> (z :> (f :> h))))), Lifting w (Schematic Monad x (y :> (z :> (f :> h)))), Lifting x (Schematic Monad y (z :> (f :> h))), Lifting y (Schematic Monad z (f :> h)), Lifting z (Schematic Monad f h), Lifting f h) => Adaptable (h :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h))))))) :: Type -> Type) Source # | |
| (Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> f))))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> f)))))), Lifting u (Schematic Monad v (w :> (x :> (y :> (z :> f))))), Lifting v (Schematic Monad w (x :> (y :> (z :> f)))), Lifting w (Schematic Monad x (y :> (z :> f))), Lifting x (Schematic Monad y (z :> f)), Lifting y (Schematic Monad z f), Wrappable z f) => Adaptable (z :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> f)))))) :: Type -> Type) Source # | |
| (Covariant (t :> (u :> (v :> (w :> (x :> (y :> (z :> f))))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> (z :> f)))))), Lifting u (Schematic Monad v (w :> (x :> (y :> (z :> f))))), Lifting v (Schematic Monad w (x :> (y :> (z :> f)))), Lifting w (Schematic Monad x (y :> (z :> f))), Lifting x (Schematic Monad y (z :> f)), Lifting y (Schematic Monad z f), Lifting z f) => Adaptable (f :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> f)))))) :: Type -> Type) Source # | |
| (Covariant (t :> (u :> (v :> (w :> (x :> (y :> z)))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Lifting u (Schematic Monad v (w :> (x :> (y :> z)))), Lifting v (Schematic Monad w (x :> (y :> z))), Lifting w (Schematic Monad x (y :> z)), Lifting x (Schematic Monad y z), Wrappable y z) => Adaptable (y :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> z))))) :: Type -> Type) Source # | |
| (Covariant (t :> (u :> (v :> (w :> (x :> (y :> z)))))), Lifting t (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Lifting u (Schematic Monad v (w :> (x :> (y :> z)))), Lifting v (Schematic Monad w (x :> (y :> z))), Lifting w (Schematic Monad x (y :> z)), Lifting x (Schematic Monad y z), Lifting y z) => Adaptable (z :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> z))))) :: Type -> Type) Source # | |
| (Covariant (t :> (u :> (v :> (w :> (x :> y))))), Lifting t (Schematic Monad u (v :> (w :> (x :> y)))), Lifting u (Schematic Monad v (w :> (x :> y))), Lifting v (Schematic Monad w (x :> y)), Lifting w (Schematic Monad x y), Wrappable x y) => Adaptable (x :: Type -> Type) (t :> (u :> (v :> (w :> (x :> y)))) :: Type -> Type) Source # | |
| (Covariant (t :> (u :> (v :> (w :> (x :> y))))), Lifting t (Schematic Monad u (v :> (w :> (x :> y)))), Lifting u (Schematic Monad v (w :> (x :> y))), Lifting v (Schematic Monad w (x :> y)), Lifting w (Schematic Monad x y), Lifting x y) => Adaptable (y :: Type -> Type) (t :> (u :> (v :> (w :> (x :> y)))) :: Type -> Type) Source # | |
| (Covariant (t :> (u :> (v :> (w :> x)))), Lifting t (Schematic Monad u (v :> (w :> x))), Lifting u (Schematic Monad v (w :> x)), Lifting v (Schematic Monad w x), Wrappable w x) => Adaptable (w :: Type -> Type) (t :> (u :> (v :> (w :> x))) :: Type -> Type) Source # | |
| (Covariant (t :> (u :> (v :> (w :> x)))), Lifting t (Schematic Monad u (v :> (w :> x))), Lifting u (Schematic Monad v (w :> x)), Lifting v (Schematic Monad w x), Lifting w x) => Adaptable (x :: Type -> Type) (t :> (u :> (v :> (w :> x))) :: Type -> Type) Source # | |
| (Covariant (t :> (u :> (v :> w))), Lifting t (Schematic Monad u v), Lifting t (Schematic Monad u (v :> w)), Lifting u (Schematic Monad v w), Lifting v w) => Adaptable (w :: Type -> Type) (t :> (u :> (v :> w)) :: Type -> Type) Source # | |
| (Covariant (t :> (u :> (v :> w))), Liftable (Schematic Monad t), Lifting t (Schematic Monad u (v :> w)), Lifting u (Schematic Monad v w), Wrappable v w) => Adaptable (v :: Type -> Type) (t :> (u :> (v :> w)) :: Type -> Type) Source # | |
| (Covariant (t :> (u :> v)), Lifting t (Schematic Monad u v), Lifting u v) => Adaptable (v :: Type -> Type) (t :> (u :> v) :: Type -> Type) Source # | |
| (Covariant (t :> (u :> v)), Liftable (Schematic Monad t), Covariant (Schematic Monad u v), Wrappable u v) => Adaptable (u :: Type -> Type) (t :> (u :> v) :: Type -> Type) Source # | |
| (Covariant (t :> u), Wrappable t u) => Adaptable (t :: Type -> Type) (t :> u :: Type -> Type) Source # | |
| (Covariant (t :> u), Lifting t u) => Adaptable (u :: Type -> Type) (t :> u :: Type -> Type) Source # | |
| (Covariant (t :< (u :< (v :< (w :< (x :< (y :< (z :< (f :< h)))))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< (y :< (z :< (f :< h))))))), Lowering u (Schematic Comonad v (w :< (x :< (y :< (z :< (f :< h)))))), Lowering v (Schematic Comonad w (x :< (y :< (z :< (f :< h))))), Lowering w (Schematic Comonad x (y :< (z :< (f :< h)))), Lowering x (Schematic Comonad y (z :< (f :< h))), Lowering y (Schematic Comonad z (f :< h)), Lowering z (Schematic Comonad f h), Bringable f h) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< (z :< (f :< h))))))) :: Type -> Type) (f :: Type -> Type) Source # | |
| (Covariant (t :< (u :< (v :< (w :< (x :< (y :< (z :< (f :< h)))))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< (y :< (z :< (f :< h))))))), Lowering u (Schematic Comonad v (w :< (x :< (y :< (z :< (f :< h)))))), Lowering v (Schematic Comonad w (x :< (y :< (z :< (f :< h))))), Lowering w (Schematic Comonad x (y :< (z :< (f :< h)))), Lowering x (Schematic Comonad y (z :< (f :< h))), Lowering y (Schematic Comonad z (f :< h)), Lowering z (Schematic Comonad f h), Lowering f h) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< (z :< (f :< h))))))) :: Type -> Type) (h :: Type -> Type) Source # | |
| (Covariant (t :< (u :< (v :< (w :< (x :< (y :< (z :< f))))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< (y :< (z :< f)))))), Lowering u (Schematic Comonad v (w :< (x :< (y :< (z :< f))))), Lowering v (Schematic Comonad w (x :< (y :< (z :< f)))), Lowering w (Schematic Comonad x (y :< (z :< f))), Lowering x (Schematic Comonad y (z :< f)), Lowering y (Schematic Comonad z f), Bringable z f) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< (z :< f)))))) :: Type -> Type) (z :: Type -> Type) Source # | |
| (Covariant (t :< (u :< (v :< (w :< (x :< (y :< (z :< f))))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< (y :< (z :< f)))))), Lowering u (Schematic Comonad v (w :< (x :< (y :< (z :< f))))), Lowering v (Schematic Comonad w (x :< (y :< (z :< f)))), Lowering w (Schematic Comonad x (y :< (z :< f))), Lowering x (Schematic Comonad y (z :< f)), Lowering y (Schematic Comonad z f), Lowering z f) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< (z :< f)))))) :: Type -> Type) (f :: Type -> Type) Source # | |
| (Covariant (t :< (u :< (v :< (w :< (x :< (y :< z)))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< (y :< z))))), Lowering u (Schematic Comonad v (w :< (x :< (y :< z)))), Lowering v (Schematic Comonad w (x :< (y :< z))), Lowering w (Schematic Comonad x (y :< z)), Lowering x (Schematic Comonad y z), Bringable y z) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< z))))) :: Type -> Type) (y :: Type -> Type) Source # | |
| (Covariant (t :< (u :< (v :< (w :< (x :< (y :< z)))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< (y :< z))))), Lowering u (Schematic Comonad v (w :< (x :< (y :< z)))), Lowering v (Schematic Comonad w (x :< (y :< z))), Lowering w (Schematic Comonad x (y :< z)), Lowering x (Schematic Comonad y z), Lowering y z) => Adaptable (t :< (u :< (v :< (w :< (x :< (y :< z))))) :: Type -> Type) (z :: Type -> Type) Source # | |
| (Covariant (t :< (u :< (v :< (w :< (x :< y))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< y)))), Lowering u (Schematic Comonad v (w :< (x :< y))), Lowering v (Schematic Comonad w (x :< y)), Lowering w (Schematic Comonad x y), Bringable x y) => Adaptable (t :< (u :< (v :< (w :< (x :< y)))) :: Type -> Type) (x :: Type -> Type) Source # | |
| (Covariant (t :< (u :< (v :< (w :< (x :< y))))), Lowering t (Schematic Comonad u (v :< (w :< (x :< y)))), Lowering u (Schematic Comonad v (w :< (x :< y))), Lowering v (Schematic Comonad w (x :< y)), Lowering w (Schematic Comonad x y), Lowering x y) => Adaptable (t :< (u :< (v :< (w :< (x :< y)))) :: Type -> Type) (y :: Type -> Type) Source # | |
| (Covariant (t :< (u :< (v :< (w :< x)))), Lowering t (Schematic Comonad u (v :< (w :< x))), Lowering u (Schematic Comonad v (w :< x)), Lowering v (Schematic Comonad w x), Bringable w x) => Adaptable (t :< (u :< (v :< (w :< x))) :: Type -> Type) (w :: Type -> Type) Source # | |
| (Covariant (t :< (u :< (v :< (w :< x)))), Lowering t (Schematic Comonad u (v :< (w :< x))), Lowering u (Schematic Comonad v (w :< x)), Lowering v (Schematic Comonad w x), Lowering w x) => Adaptable (t :< (u :< (v :< (w :< x))) :: Type -> Type) (x :: Type -> Type) Source # | |
| (Covariant (t :< (u :< (v :< w))), Lowering t (Schematic Comonad u v), Lowering t (Schematic Comonad u (v :< w)), Lowering u (Schematic Comonad v w), Lowering v w) => Adaptable (t :< (u :< (v :< w)) :: Type -> Type) (w :: Type -> Type) Source # | |
| (Covariant (t :< (u :< (v :< w))), Lowering t (Schematic Comonad u (v :< w)), Lowering u (Schematic Comonad v w), Bringable v w) => Adaptable (t :< (u :< (v :< w)) :: Type -> Type) (v :: Type -> Type) Source # | |
| (Covariant (t :< (u :< v)), Lowering t (Schematic Comonad u v), Lowering u v) => Adaptable (t :< (u :< v) :: Type -> Type) (v :: Type -> Type) Source # | |
| (Covariant (t :< (u :< v)), Lowering t (Schematic Comonad u v), Bringable u v) => Adaptable (t :< (u :< v) :: Type -> Type) (u :: Type -> Type) Source # | |
| (Covariant (t :< u), Bringable t u) => Adaptable (t :< u :: Type -> Type) (t :: Type -> Type) Source # | |
| (Covariant (t :> u), Lowering t u) => Adaptable (t :< u :: Type -> Type) (u :: Type -> Type) Source # | |
| (Covariant u, Covariant v, Covariant w, Covariant x, Covariant y, Covariant z, Covariant f, Covariant h, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad u (v :> (w :> (x :> y)))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> (z :> f)))))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> (z :> (f :> h))))))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad v (w :> (x :> y))), Covariant (Schematic Monad v (w :> (x :> (y :> z)))), Covariant (Schematic Monad v (w :> (x :> (y :> (z :> f))))), Covariant (Schematic Monad v (w :> (x :> (y :> (z :> (f :> h)))))), Covariant (Schematic Monad w (x :> y)), Covariant (Schematic Monad w (x :> (y :> z))), Covariant (Schematic Monad w (x :> (y :> (z :> f)))), Covariant (Schematic Monad w (x :> (y :> (z :> (f :> h))))), Covariant (Schematic Monad x y), Covariant (Schematic Monad x (y :> z)), Covariant (Schematic Monad x (y :> (z :> f))), Covariant (Schematic Monad x (y :> (z :> (f :> h)))), Covariant (Schematic Monad y z), Covariant (Schematic Monad y (z :> f)), Covariant (Schematic Monad y (z :> (f :> h))), Covariant (Schematic Monad z f), Covariant (Schematic Monad z (f :> h)), Covariant (Schematic Monad f h), Hoistable ((:>) (t :> (u :> (v :> w)))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Hoistable (Schematic Monad x), Hoistable (Schematic Monad y), Hoistable (Schematic Monad z), Hoistable (Schematic Monad f), Adaptable h h') => Adaptable (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h))))))) :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> (f :> h'))))))) :: Type -> Type) Source # | |
| (Covariant u, Covariant v, Covariant w, Covariant x, Covariant y, Covariant z, Covariant f, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad u (v :> (w :> (x :> y)))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> (z :> f)))))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad v (w :> (x :> y))), Covariant (Schematic Monad v (w :> (x :> (y :> z)))), Covariant (Schematic Monad v (w :> (x :> (y :> (z :> f))))), Covariant (Schematic Monad w (x :> y)), Covariant (Schematic Monad w (x :> (y :> z))), Covariant (Schematic Monad w (x :> (y :> (z :> f)))), Covariant (Schematic Monad x y), Covariant (Schematic Monad x (y :> z)), Covariant (Schematic Monad x (y :> (z :> f))), Covariant (Schematic Monad y z), Covariant (Schematic Monad y (z :> f)), Covariant (Schematic Monad z f), Hoistable ((:>) (t :> (u :> (v :> w)))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Hoistable (Schematic Monad x), Hoistable (Schematic Monad y), Hoistable (Schematic Monad z), Adaptable f f') => Adaptable (t :> (u :> (v :> (w :> (x :> (y :> (z :> f)))))) :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> (z :> f')))))) :: Type -> Type) Source # | |
| (Covariant u, Covariant v, Covariant w, Covariant x, Covariant y, Covariant z, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad u (v :> (w :> (x :> y)))), Covariant (Schematic Monad u (v :> (w :> (x :> (y :> z))))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad v (w :> (x :> y))), Covariant (Schematic Monad v (w :> (x :> (y :> z)))), Covariant (Schematic Monad w (x :> y)), Covariant (Schematic Monad w (x :> (y :> z))), Covariant (Schematic Monad x y), Covariant (Schematic Monad x (y :> z)), Covariant (Schematic Monad y z), Hoistable ((:>) (t :> (u :> (v :> w)))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Hoistable (Schematic Monad x), Hoistable (Schematic Monad y), Adaptable z z') => Adaptable (t :> (u :> (v :> (w :> (x :> (y :> z))))) :: Type -> Type) (t :> (u :> (v :> (w :> (x :> (y :> z'))))) :: Type -> Type) Source # | |
| (Covariant u, Covariant v, Covariant w, Covariant x, Covariant y, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad u (v :> (w :> (x :> y)))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad v (w :> (x :> y))), Covariant (Schematic Monad w (x :> y)), Covariant (Schematic Monad x y), Hoistable ((:>) (t :> (u :> (v :> w)))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Hoistable (Schematic Monad x), Adaptable y y') => Adaptable (t :> (u :> (v :> (w :> (x :> y)))) :: Type -> Type) (t :> (u :> (v :> (w :> (x :> y')))) :: Type -> Type) Source # | |
| (Covariant u, Covariant v, Covariant w, Covariant x, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad u (v :> (w :> x))), Covariant (Schematic Monad v (w :> x)), Covariant (Schematic Monad w x), Hoistable ((:>) (t :> (u :> v))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Hoistable (Schematic Monad w), Adaptable x x') => Adaptable (t :> (u :> (v :> (w :> x))) :: Type -> Type) (t :> (u :> (v :> (w :> x'))) :: Type -> Type) Source # | |
| (Covariant u, Covariant v, Covariant w, Covariant (Schematic Monad u v), Covariant (Schematic Monad u (v :> w)), Covariant (Schematic Monad v w), Hoistable ((:>) (t :> (u :> v))), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Hoistable (Schematic Monad v), Adaptable w w') => Adaptable (t :> (u :> (v :> w)) :: Type -> Type) (t :> (u :> (v :> w')) :: Type -> Type) Source # | |
| (Covariant u, Covariant v, Covariant (Schematic Monad u v), Hoistable ((:>) (t :> u)), Hoistable (Schematic Monad t), Hoistable (Schematic Monad u), Adaptable v v') => Adaptable (t :> (u :> v) :: Type -> Type) (t :> (u :> v') :: Type -> Type) Source # | |
| (Covariant u, Hoistable ((:>) t), Adaptable u u') => Adaptable (t :> u :: Type -> Type) (t :> u' :: Type -> Type) Source # | |
type Bringable t u = (Transformer Comonad t, Extractable u) Source #