pandora-0.3.6: A box of patterns and paradigms
Safe HaskellSafe-Inferred
LanguageHaskell2010

Pandora.Paradigm.Primary.Functor.Identity

Documentation

newtype Identity a Source #

Constructors

Identity a 

Instances

Instances details
Covariant Identity Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Methods

(<$>) :: (a -> b) -> Identity a -> Identity b Source #

comap :: (a -> b) -> Identity a -> Identity b Source #

(<$) :: a -> Identity b -> Identity a Source #

($>) :: Identity a -> b -> Identity b Source #

void :: Identity a -> Identity () Source #

loeb :: Identity (a <:= Identity) -> Identity a Source #

(<&>) :: Identity a -> (a -> b) -> Identity b Source #

(<$$>) :: Covariant u => (a -> b) -> ((Identity :. u) := a) -> (Identity :. u) := b Source #

(<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Identity :. (u :. v)) := a) -> (Identity :. (u :. v)) := b Source #

(<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Identity :. (u :. (v :. w))) := a) -> (Identity :. (u :. (v :. w))) := b Source #

(<&&>) :: Covariant u => ((Identity :. u) := a) -> (a -> b) -> (Identity :. u) := b Source #

(<&&&>) :: (Covariant u, Covariant v) => ((Identity :. (u :. v)) := a) -> (a -> b) -> (Identity :. (u :. v)) := b Source #

(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Identity :. (u :. (v :. w))) := a) -> (a -> b) -> (Identity :. (u :. (v :. w))) := b Source #

Bindable Identity Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Methods

(>>=) :: Identity a -> (a -> Identity b) -> Identity b Source #

(=<<) :: (a -> Identity b) -> Identity a -> Identity b Source #

bind :: (a -> Identity b) -> Identity a -> Identity b Source #

join :: ((Identity :. Identity) := a) -> Identity a Source #

(>=>) :: (a -> Identity b) -> (b -> Identity c) -> a -> Identity c Source #

(<=<) :: (b -> Identity c) -> (a -> Identity b) -> a -> Identity c Source #

($>>=) :: Covariant u => ((u :. Identity) := a) -> (a -> Identity b) -> (u :. Identity) := b Source #

Applicative Identity Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Methods

(<*>) :: Identity (a -> b) -> Identity a -> Identity b Source #

apply :: Identity (a -> b) -> Identity a -> Identity b Source #

(*>) :: Identity a -> Identity b -> Identity b Source #

(<*) :: Identity a -> Identity b -> Identity a Source #

forever :: Identity a -> Identity b Source #

(<**>) :: Applicative u => ((Identity :. u) := (a -> b)) -> ((Identity :. u) := a) -> (Identity :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Identity :. (u :. v)) := (a -> b)) -> ((Identity :. (u :. v)) := a) -> (Identity :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Identity :. (u :. (v :. w))) := (a -> b)) -> ((Identity :. (u :. (v :. w))) := a) -> (Identity :. (u :. (v :. w))) := b Source #

Distributive Identity Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Methods

(>>-) :: Covariant u => u a -> (a -> Identity b) -> (Identity :. u) := b Source #

collect :: Covariant u => (a -> Identity b) -> u a -> (Identity :. u) := b Source #

distribute :: Covariant u => ((u :. Identity) := a) -> (Identity :. u) := a Source #

(>>>-) :: (Covariant u, Covariant v) => ((u :. v) := a) -> (a -> Identity b) -> (Identity :. (u :. v)) := b Source #

(>>>>-) :: (Covariant u, Covariant v, Covariant w) => ((u :. (v :. w)) := a) -> (a -> Identity b) -> (Identity :. (u :. (v :. w))) := b Source #

(>>>>>-) :: (Covariant u, Covariant v, Covariant w, Covariant j) => ((u :. (v :. (w :. j))) := a) -> (a -> Identity b) -> (Identity :. (u :. (v :. (w :. j)))) := b Source #

Extendable Identity Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Methods

(=>>) :: Identity a -> (Identity a -> b) -> Identity b Source #

(<<=) :: (Identity a -> b) -> Identity a -> Identity b Source #

extend :: (Identity a -> b) -> Identity a -> Identity b Source #

duplicate :: Identity a -> (Identity :. Identity) := a Source #

(=<=) :: (Identity b -> c) -> (Identity a -> b) -> Identity a -> c Source #

(=>=) :: (Identity a -> b) -> (Identity b -> c) -> Identity a -> c Source #

($=>>) :: Covariant u => ((u :. Identity) := a) -> (Identity a -> b) -> (u :. Identity) := b Source #

(<<=$) :: Covariant u => ((u :. Identity) := a) -> (Identity a -> b) -> (u :. Identity) := b Source #

Extractable Identity Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Comonad Identity Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Pointable Identity Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Methods

point :: a :=> Identity Source #

Monad Identity Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Representable Identity Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Associated Types

type Representation Identity Source #

Traversable Identity Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Methods

(->>) :: (Pointable u, Applicative u) => Identity a -> (a -> u b) -> (u :. Identity) := b Source #

traverse :: (Pointable u, Applicative u) => (a -> u b) -> Identity a -> (u :. Identity) := b Source #

sequence :: (Pointable u, Applicative u) => ((Identity :. u) := a) -> (u :. Identity) := a Source #

(->>>) :: (Pointable u, Applicative u, Traversable v) => ((v :. Identity) := a) -> (a -> u b) -> (u :. (v :. Identity)) := b Source #

(->>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w) => ((w :. (v :. Identity)) := a) -> (a -> u b) -> (u :. (w :. (v :. Identity))) := b Source #

(->>>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. Identity))) := a) -> (a -> u b) -> (u :. (j :. (w :. (v :. Identity)))) := b Source #

Adjoint Identity Identity Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Methods

(-|) :: a -> (Identity a -> b) -> Identity b Source #

(|-) :: Identity a -> (a -> Identity b) -> b Source #

phi :: (Identity a -> b) -> a -> Identity b Source #

psi :: (a -> Identity b) -> Identity a -> b Source #

eta :: a -> (Identity :. Identity) := a Source #

epsilon :: ((Identity :. Identity) := a) -> a Source #

(-|$) :: Covariant v => v a -> (Identity a -> b) -> v (Identity b) Source #

($|-) :: Covariant v => v (Identity a) -> (a -> Identity b) -> v b Source #

($$|-) :: (Covariant v, Covariant w) => ((v :. (w :. Identity)) := a) -> (a -> Identity b) -> (v :. w) := b Source #

($$$|-) :: (Covariant v, Covariant w, Covariant x) => ((v :. (w :. (x :. Identity))) := a) -> (a -> Identity b) -> (v :. (w :. x)) := b Source #

($$$$|-) :: (Covariant v, Covariant w, Covariant x, Covariant y) => ((v :. (w :. (x :. (y :. Identity)))) := a) -> (a -> Identity b) -> (v :. (w :. (x :. y))) := b Source #

Extendable (Tap ((:*:) <:.:> Stream)) Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Stream

Methods

(=>>) :: Tap ((:*:) <:.:> Stream) a -> (Tap ((:*:) <:.:> Stream) a -> b) -> Tap ((:*:) <:.:> Stream) b Source #

(<<=) :: (Tap ((:*:) <:.:> Stream) a -> b) -> Tap ((:*:) <:.:> Stream) a -> Tap ((:*:) <:.:> Stream) b Source #

extend :: (Tap ((:*:) <:.:> Stream) a -> b) -> Tap ((:*:) <:.:> Stream) a -> Tap ((:*:) <:.:> Stream) b Source #

duplicate :: Tap ((:*:) <:.:> Stream) a -> (Tap ((:*:) <:.:> Stream) :. Tap ((:*:) <:.:> Stream)) := a Source #

(=<=) :: (Tap ((:*:) <:.:> Stream) b -> c) -> (Tap ((:*:) <:.:> Stream) a -> b) -> Tap ((:*:) <:.:> Stream) a -> c Source #

(=>=) :: (Tap ((:*:) <:.:> Stream) a -> b) -> (Tap ((:*:) <:.:> Stream) b -> c) -> Tap ((:*:) <:.:> Stream) a -> c Source #

($=>>) :: Covariant u => ((u :. Tap ((:*:) <:.:> Stream)) := a) -> (Tap ((:*:) <:.:> Stream) a -> b) -> (u :. Tap ((:*:) <:.:> Stream)) := b Source #

(<<=$) :: Covariant u => ((u :. Tap ((:*:) <:.:> Stream)) := a) -> (Tap ((:*:) <:.:> Stream) a -> b) -> (u :. Tap ((:*:) <:.:> Stream)) := b Source #

Semigroup a => Semigroup (Identity a) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Methods

(+) :: Identity a -> Identity a -> Identity a Source #

Ringoid a => Ringoid (Identity a) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Methods

(*) :: Identity a -> Identity a -> Identity a Source #

Monoid a => Monoid (Identity a) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Methods

zero :: Identity a Source #

Quasiring a => Quasiring (Identity a) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Methods

one :: Identity a Source #

Group a => Group (Identity a) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Supremum a => Supremum (Identity a) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Methods

(\/) :: Identity a -> Identity a -> Identity a Source #

Infimum a => Infimum (Identity a) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Methods

(/\) :: Identity a -> Identity a -> Identity a Source #

Lattice a => Lattice (Identity a) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Setoid a => Setoid (Identity a) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Chain a => Chain (Identity a) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

Morphable ('Rotate ('Right :: a -> Wye a) :: Morph (a -> Wye a)) (Tap ((:*:) <:.:> Stream)) Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Stream

Associated Types

type Morphing ('Rotate 'Right) (Tap ((:*:) <:.:> Stream)) :: Type -> Type Source #

Morphable ('Rotate ('Left :: a -> Wye a) :: Morph (a -> Wye a)) (Tap ((:*:) <:.:> Stream)) Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Stream

Associated Types

type Morphing ('Rotate 'Left) (Tap ((:*:) <:.:> Stream)) :: Type -> Type Source #

type Zipper Stream Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Stream

type Representation Identity Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Identity

type Morphing ('Rotate ('Right :: a -> Wye a) :: Morph (a -> Wye a)) (Tap ((:*:) <:.:> Stream)) Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Stream

type Morphing ('Rotate ('Right :: a -> Wye a) :: Morph (a -> Wye a)) (Tap ((:*:) <:.:> Stream)) = Tap ((:*:) <:.:> Stream)
type Morphing ('Rotate ('Left :: a -> Wye a) :: Morph (a -> Wye a)) (Tap ((:*:) <:.:> Stream)) Source # 
Instance details

Defined in Pandora.Paradigm.Structure.Stream

type Morphing ('Rotate ('Left :: a -> Wye a) :: Morph (a -> Wye a)) (Tap ((:*:) <:.:> Stream)) = Tap ((:*:) <:.:> Stream)