Pandora.Paradigm.Primary.Functor.Proxy
data Proxy a Source #
Constructors
Defined in Pandora.Paradigm.Primary.Functor.Proxy
Methods
(>$<) :: (a -> b) -> Proxy b -> Proxy a Source #
contramap :: (a -> b) -> Proxy b -> Proxy a Source #
(>$) :: b -> Proxy b -> Proxy a Source #
($<) :: Proxy b -> b -> Proxy a Source #
full :: Proxy () -> Proxy a Source #
(>&<) :: Proxy b -> (a -> b) -> Proxy a Source #
(>$$<) :: Contravariant u => (a -> b) -> ((Proxy :. u) := a) -> (Proxy :. u) := b Source #
(>$$$<) :: (Contravariant u, Contravariant v) => (a -> b) -> ((Proxy :. (u :. v)) := b) -> (Proxy :. (u :. v)) := a Source #
(>$$$$<) :: (Contravariant u, Contravariant v, Contravariant w) => (a -> b) -> ((Proxy :. (u :. (v :. w))) := a) -> (Proxy :. (u :. (v :. w))) := b Source #
(>&&<) :: Contravariant u => ((Proxy :. u) := a) -> (a -> b) -> (Proxy :. u) := b Source #
(>&&&<) :: (Contravariant u, Contravariant v) => ((Proxy :. (u :. v)) := b) -> (a -> b) -> (Proxy :. (u :. v)) := a Source #
(>&&&&<) :: (Contravariant u, Contravariant v, Contravariant w) => ((Proxy :. (u :. (v :. w))) := a) -> (a -> b) -> (Proxy :. (u :. (v :. w))) := b Source #
(<$>) :: (a -> b) -> Proxy a -> Proxy b Source #
comap :: (a -> b) -> Proxy a -> Proxy b Source #
(<$) :: a -> Proxy b -> Proxy a Source #
($>) :: Proxy a -> b -> Proxy b Source #
void :: Proxy a -> Proxy () Source #
loeb :: Proxy (a <:= Proxy) -> Proxy a Source #
(<&>) :: Proxy a -> (a -> b) -> Proxy b Source #
(<$$>) :: Covariant u => (a -> b) -> ((Proxy :. u) := a) -> (Proxy :. u) := b Source #
(<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Proxy :. (u :. v)) := a) -> (Proxy :. (u :. v)) := b Source #
(<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Proxy :. (u :. (v :. w))) := a) -> (Proxy :. (u :. (v :. w))) := b Source #
(<&&>) :: Covariant u => ((Proxy :. u) := a) -> (a -> b) -> (Proxy :. u) := b Source #
(<&&&>) :: (Covariant u, Covariant v) => ((Proxy :. (u :. v)) := a) -> (a -> b) -> (Proxy :. (u :. v)) := b Source #
(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Proxy :. (u :. (v :. w))) := a) -> (a -> b) -> (Proxy :. (u :. (v :. w))) := b Source #
(>>=) :: Proxy a -> (a -> Proxy b) -> Proxy b Source #
(=<<) :: (a -> Proxy b) -> Proxy a -> Proxy b Source #
bind :: (a -> Proxy b) -> Proxy a -> Proxy b Source #
join :: ((Proxy :. Proxy) := a) -> Proxy a Source #
(>=>) :: (a -> Proxy b) -> (b -> Proxy c) -> a -> Proxy c Source #
(<=<) :: (b -> Proxy c) -> (a -> Proxy b) -> a -> Proxy c Source #
($>>=) :: Covariant u => ((u :. Proxy) := a) -> (a -> Proxy b) -> (u :. Proxy) := b Source #
(<*>) :: Proxy (a -> b) -> Proxy a -> Proxy b Source #
apply :: Proxy (a -> b) -> Proxy a -> Proxy b Source #
(*>) :: Proxy a -> Proxy b -> Proxy b Source #
(<*) :: Proxy a -> Proxy b -> Proxy a Source #
forever :: Proxy a -> Proxy b Source #
(<**>) :: Applicative u => ((Proxy :. u) := (a -> b)) -> ((Proxy :. u) := a) -> (Proxy :. u) := b Source #
(<***>) :: (Applicative u, Applicative v) => ((Proxy :. (u :. v)) := (a -> b)) -> ((Proxy :. (u :. v)) := a) -> (Proxy :. (u :. v)) := b Source #
(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Proxy :. (u :. (v :. w))) := (a -> b)) -> ((Proxy :. (u :. (v :. w))) := a) -> (Proxy :. (u :. (v :. w))) := b Source #
(<+>) :: Proxy a -> Proxy a -> Proxy a Source #
alter :: Proxy a -> Proxy a -> Proxy a Source #
(>>-) :: Covariant u => u a -> (a -> Proxy b) -> (Proxy :. u) := b Source #
collect :: Covariant u => (a -> Proxy b) -> u a -> (Proxy :. u) := b Source #
distribute :: Covariant u => ((u :. Proxy) := a) -> (Proxy :. u) := a Source #
(>>>-) :: (Covariant u, Covariant v) => ((u :. v) := a) -> (a -> Proxy b) -> (Proxy :. (u :. v)) := b Source #
(>>>>-) :: (Covariant u, Covariant v, Covariant w) => ((u :. (v :. w)) := a) -> (a -> Proxy b) -> (Proxy :. (u :. (v :. w))) := b Source #
(>>>>>-) :: (Covariant u, Covariant v, Covariant w, Covariant j) => ((u :. (v :. (w :. j))) := a) -> (a -> Proxy b) -> (Proxy :. (u :. (v :. (w :. j)))) := b Source #
(=>>) :: Proxy a -> (Proxy a -> b) -> Proxy b Source #
(<<=) :: (Proxy a -> b) -> Proxy a -> Proxy b Source #
extend :: (Proxy a -> b) -> Proxy a -> Proxy b Source #
duplicate :: Proxy a -> (Proxy :. Proxy) := a Source #
(=<=) :: (Proxy b -> c) -> (Proxy a -> b) -> Proxy a -> c Source #
(=>=) :: (Proxy a -> b) -> (Proxy b -> c) -> Proxy a -> c Source #
($=>>) :: Covariant u => ((u :. Proxy) := a) -> (Proxy a -> b) -> (u :. Proxy) := b Source #
(<<=$) :: Covariant u => ((u :. Proxy) := a) -> (Proxy a -> b) -> (u :. Proxy) := b Source #
point :: a :=> Proxy Source #
(>>=-) :: Proxy a -> Proxy b -> Proxy a Source #
(->>=) :: Proxy a -> Proxy b -> Proxy b Source #
(-=<<) :: Proxy a -> Proxy b -> Proxy b Source #
(=<<-) :: Proxy a -> Proxy b -> Proxy a Source #