Pandora.Paradigm.Structure.Modification.Prefixed
type Keyed k = Product k <:.> Maybe Source #
newtype Prefixed t k a Source #
Constructors
Defined in Pandora.Paradigm.Structure.Modification.Prefixed
Methods
(?=) :: k -> Prefixed t k a -> Maybe a Source #
(<$>) :: (a -> b) -> Prefixed t k a -> Prefixed t k b Source #
comap :: (a -> b) -> Prefixed t k a -> Prefixed t k b Source #
(<$) :: a -> Prefixed t k b -> Prefixed t k a Source #
($>) :: Prefixed t k a -> b -> Prefixed t k b Source #
void :: Prefixed t k a -> Prefixed t k () Source #
loeb :: Prefixed t k (a <:= Prefixed t k) -> Prefixed t k a Source #
(<&>) :: Prefixed t k a -> (a -> b) -> Prefixed t k b Source #
(<$$>) :: Covariant u => (a -> b) -> ((Prefixed t k :. u) := a) -> (Prefixed t k :. u) := b Source #
(<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Prefixed t k :. (u :. v)) := a) -> (Prefixed t k :. (u :. v)) := b Source #
(<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Prefixed t k :. (u :. (v :. w))) := a) -> (Prefixed t k :. (u :. (v :. w))) := b Source #
(<&&>) :: Covariant u => ((Prefixed t k :. u) := a) -> (a -> b) -> (Prefixed t k :. u) := b Source #
(<&&&>) :: (Covariant u, Covariant v) => ((Prefixed t k :. (u :. v)) := a) -> (a -> b) -> (Prefixed t k :. (u :. v)) := b Source #
(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Prefixed t k :. (u :. (v :. w))) := a) -> (a -> b) -> (Prefixed t k :. (u :. (v :. w))) := b Source #
point :: a :=> Prefixed t k Source #
(->>) :: (Pointable u, Applicative u) => Prefixed t k a -> (a -> u b) -> (u :. Prefixed t k) := b Source #
traverse :: (Pointable u, Applicative u) => (a -> u b) -> Prefixed t k a -> (u :. Prefixed t k) := b Source #
sequence :: (Pointable u, Applicative u) => ((Prefixed t k :. u) := a) -> (u :. Prefixed t k) := a Source #
(->>>) :: (Pointable u, Applicative u, Traversable v) => ((v :. Prefixed t k) := a) -> (a -> u b) -> (u :. (v :. Prefixed t k)) := b Source #
(->>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w) => ((w :. (v :. Prefixed t k)) := a) -> (a -> u b) -> (u :. (w :. (v :. Prefixed t k))) := b Source #
(->>>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. Prefixed t k))) := a) -> (a -> u b) -> (u :. (j :. (w :. (v :. Prefixed t k)))) := b Source #
Associated Types
type Primary (Prefixed t k) a Source #
run :: Prefixed t k a -> Primary (Prefixed t k) a Source #
unite :: Primary (Prefixed t k) a -> Prefixed t k a Source #
(||=) :: (Primary (Prefixed t k) a -> Primary (Prefixed t k) b) -> Prefixed t k a -> Prefixed t k b Source #
(=||) :: (Prefixed t k a -> Prefixed t k b) -> Primary (Prefixed t k) a -> Primary (Prefixed t k) b Source #