pandora-0.4.3: A box of patterns and paradigms
Safe HaskellSafe-Inferred
LanguageHaskell2010

Pandora.Paradigm.Primary.Functor.Constant

Documentation

newtype Constant a b Source #

Constructors

Constant a 

Instances

Instances details
Bivariant (Constant :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

(<->) :: (forall i. Covariant (Constant i)) => (a -> b) -> (c -> d) -> Constant a c -> Constant b d Source #

bimap :: (forall i. Covariant (Constant i)) => (a -> b) -> (c -> d) -> Constant a c -> Constant b d Source #

Contravariant (Constant a :: Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

(>$<) :: (a0 -> b) -> Constant a b -> Constant a a0 Source #

contramap :: (a0 -> b) -> Constant a b -> Constant a a0 Source #

(>$) :: b -> Constant a b -> Constant a a0 Source #

($<) :: Constant a b -> b -> Constant a a0 Source #

full :: Constant a () -> Constant a a0 Source #

(>&<) :: Constant a b -> (a0 -> b) -> Constant a a0 Source #

(>$$<) :: Contravariant u => (a0 -> b) -> ((Constant a :. u) := a0) -> (Constant a :. u) := b Source #

(>$$$<) :: (Contravariant u, Contravariant v) => (a0 -> b) -> ((Constant a :. (u :. v)) := b) -> (Constant a :. (u :. v)) := a0 Source #

(>$$$$<) :: (Contravariant u, Contravariant v, Contravariant w) => (a0 -> b) -> ((Constant a :. (u :. (v :. w))) := a0) -> (Constant a :. (u :. (v :. w))) := b Source #

(>&&<) :: Contravariant u => ((Constant a :. u) := a0) -> (a0 -> b) -> (Constant a :. u) := b Source #

(>&&&<) :: (Contravariant u, Contravariant v) => ((Constant a :. (u :. v)) := b) -> (a0 -> b) -> (Constant a :. (u :. v)) := a0 Source #

(>&&&&<) :: (Contravariant u, Contravariant v, Contravariant w) => ((Constant a :. (u :. (v :. w))) := a0) -> (a0 -> b) -> (Constant a :. (u :. (v :. w))) := b Source #

Covariant (Constant a :: Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

(<$>) :: (a0 -> b) -> Constant a a0 -> Constant a b Source #

comap :: (a0 -> b) -> Constant a a0 -> Constant a b Source #

(<$) :: a0 -> Constant a b -> Constant a a0 Source #

($>) :: Constant a a0 -> b -> Constant a b Source #

void :: Constant a a0 -> Constant a () Source #

loeb :: Constant a (a0 <:= Constant a) -> Constant a a0 Source #

(<&>) :: Constant a a0 -> (a0 -> b) -> Constant a b Source #

(<$$>) :: Covariant u => (a0 -> b) -> ((Constant a :. u) := a0) -> (Constant a :. u) := b Source #

(<$$$>) :: (Covariant u, Covariant v) => (a0 -> b) -> ((Constant a :. (u :. v)) := a0) -> (Constant a :. (u :. v)) := b Source #

(<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a0 -> b) -> ((Constant a :. (u :. (v :. w))) := a0) -> (Constant a :. (u :. (v :. w))) := b Source #

(<&&>) :: Covariant u => ((Constant a :. u) := a0) -> (a0 -> b) -> (Constant a :. u) := b Source #

(<&&&>) :: (Covariant u, Covariant v) => ((Constant a :. (u :. v)) := a0) -> (a0 -> b) -> (Constant a :. (u :. v)) := b Source #

(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Constant a :. (u :. (v :. w))) := a0) -> (a0 -> b) -> (Constant a :. (u :. (v :. w))) := b Source #

(.#..) :: (Constant a ~ v a0, Category v) => v c d -> ((v a0 :. v b) := c) -> (v a0 :. v b) := d Source #

(.#...) :: (Constant a ~ v a0, Constant a ~ v b, Category v, Covariant (v a0), Covariant (v b)) => v d e -> ((v a0 :. (v b :. v c)) := d) -> (v a0 :. (v b :. v c)) := e Source #

(.#....) :: (Constant a ~ v a0, Constant a ~ v b, Constant a ~ v c, Category v, Covariant (v a0), Covariant (v b), Covariant (v c)) => v e f -> ((v a0 :. (v b :. (v c :. v d))) := e) -> (v a0 :. (v b :. (v c :. v d))) := f Source #

(<$$) :: Covariant u => b -> ((Constant a :. u) := a0) -> (Constant a :. u) := b Source #

(<$$$) :: (Covariant u, Covariant v) => b -> ((Constant a :. (u :. v)) := a0) -> (Constant a :. (u :. v)) := b Source #

(<$$$$) :: (Covariant u, Covariant v, Covariant w) => b -> ((Constant a :. (u :. (v :. w))) := a0) -> (Constant a :. (u :. (v :. w))) := b Source #

($$>) :: Covariant u => ((Constant a :. u) := a0) -> b -> (Constant a :. u) := b Source #

($$$>) :: (Covariant u, Covariant v) => ((Constant a :. (u :. v)) := a0) -> b -> (Constant a :. (u :. v)) := b Source #

($$$$>) :: (Covariant u, Covariant v, Covariant w) => ((Constant a :. (u :. (v :. w))) := a0) -> b -> (Constant a :. (u :. (v :. w))) := b Source #

Invariant (Constant a :: Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

(<$<) :: (a0 -> b) -> (b -> a0) -> Constant a a0 -> Constant a b Source #

invmap :: (a0 -> b) -> (b -> a0) -> Constant a a0 -> Constant a b Source #

Traversable (Constant a :: Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

(->>) :: (Pointable u (->), Applicative u) => Constant a a0 -> (a0 -> u b) -> (u :. Constant a) := b Source #

traverse :: (Pointable u (->), Applicative u) => (a0 -> u b) -> Constant a a0 -> (u :. Constant a) := b Source #

sequence :: (Pointable u (->), Applicative u) => ((Constant a :. u) := a0) -> (u :. Constant a) := a0 Source #

(->>>) :: (Pointable u (->), Applicative u, Traversable v) => ((v :. Constant a) := a0) -> (a0 -> u b) -> (u :. (v :. Constant a)) := b Source #

(->>>>) :: (Pointable u (->), Applicative u, Traversable v, Traversable w) => ((w :. (v :. Constant a)) := a0) -> (a0 -> u b) -> (u :. (w :. (v :. Constant a))) := b Source #

(->>>>>) :: (Pointable u (->), Applicative u, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. Constant a))) := a0) -> (a0 -> u b) -> (u :. (j :. (w :. (v :. Constant a)))) := b Source #

Covariant_ (Constant a :: Type -> Type) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

(-<$>-) :: (a0 -> b) -> Constant a a0 -> Constant a b Source #

Semigroup a => Semigroup (Constant a b) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

(+) :: Constant a b -> Constant a b -> Constant a b Source #

Ringoid a => Ringoid (Constant a b) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

(*) :: Constant a b -> Constant a b -> Constant a b Source #

Monoid a => Monoid (Constant a b) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

zero :: Constant a b Source #

Quasiring a => Quasiring (Constant a b) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

one :: Constant a b Source #

Group a => Group (Constant a b) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

invert :: Constant a b -> Constant a b Source #

(-) :: Constant a b -> Constant a b -> Constant a b Source #

Supremum a => Supremum (Constant a b) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

(\/) :: Constant a b -> Constant a b -> Constant a b Source #

Infimum a => Infimum (Constant a b) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

(/\) :: Constant a b -> Constant a b -> Constant a b Source #

Lattice a => Lattice (Constant a b) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Setoid a => Setoid (Constant a b) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

(==) :: Constant a b -> Constant a b -> Boolean Source #

(!=) :: Constant a b -> Constant a b -> Boolean Source #

Chain a => Chain (Constant a b) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

(<=>) :: Constant a b -> Constant a b -> Ordering Source #

(<) :: Constant a b -> Constant a b -> Boolean Source #

(<=) :: Constant a b -> Constant a b -> Boolean Source #

(>) :: Constant a b -> Constant a b -> Boolean Source #

(>=) :: Constant a b -> Constant a b -> Boolean Source #