pandora-0.4.4: A box of patterns and paradigms
Safe HaskellSafe-Inferred
LanguageHaskell2010

Pandora.Paradigm.Primary.Functor.Proxy

Documentation

data Proxy a Source #

Constructors

Proxy 

Instances

Instances details
Contravariant (Proxy :: Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Proxy

Methods

(>$<) :: (a -> b) -> Proxy b -> Proxy a Source #

contramap :: (a -> b) -> Proxy b -> Proxy a Source #

(>$) :: b -> Proxy b -> Proxy a Source #

($<) :: Proxy b -> b -> Proxy a Source #

full :: Proxy () -> Proxy a Source #

(>&<) :: Proxy b -> (a -> b) -> Proxy a Source #

(>$$<) :: Contravariant u => (a -> b) -> ((Proxy :. u) := a) -> (Proxy :. u) := b Source #

(>$$$<) :: (Contravariant u, Contravariant v) => (a -> b) -> ((Proxy :. (u :. v)) := b) -> (Proxy :. (u :. v)) := a Source #

(>$$$$<) :: (Contravariant u, Contravariant v, Contravariant w) => (a -> b) -> ((Proxy :. (u :. (v :. w))) := a) -> (Proxy :. (u :. (v :. w))) := b Source #

(>&&<) :: Contravariant u => ((Proxy :. u) := a) -> (a -> b) -> (Proxy :. u) := b Source #

(>&&&<) :: (Contravariant u, Contravariant v) => ((Proxy :. (u :. v)) := b) -> (a -> b) -> (Proxy :. (u :. v)) := a Source #

(>&&&&<) :: (Contravariant u, Contravariant v, Contravariant w) => ((Proxy :. (u :. (v :. w))) := a) -> (a -> b) -> (Proxy :. (u :. (v :. w))) := b Source #

Covariant (Proxy :: Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Proxy

Methods

(<$>) :: (a -> b) -> Proxy a -> Proxy b Source #

comap :: (a -> b) -> Proxy a -> Proxy b Source #

(<$) :: a -> Proxy b -> Proxy a Source #

($>) :: Proxy a -> b -> Proxy b Source #

void :: Proxy a -> Proxy () Source #

loeb :: Proxy (a <:= Proxy) -> Proxy a Source #

(<&>) :: Proxy a -> (a -> b) -> Proxy b Source #

(<$$>) :: Covariant u => (a -> b) -> ((Proxy :. u) := a) -> (Proxy :. u) := b Source #

(<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Proxy :. (u :. v)) := a) -> (Proxy :. (u :. v)) := b Source #

(<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Proxy :. (u :. (v :. w))) := a) -> (Proxy :. (u :. (v :. w))) := b Source #

(<&&>) :: Covariant u => ((Proxy :. u) := a) -> (a -> b) -> (Proxy :. u) := b Source #

(<&&&>) :: (Covariant u, Covariant v) => ((Proxy :. (u :. v)) := a) -> (a -> b) -> (Proxy :. (u :. v)) := b Source #

(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Proxy :. (u :. (v :. w))) := a) -> (a -> b) -> (Proxy :. (u :. (v :. w))) := b Source #

(.#..) :: (Proxy ~ v a, Category v) => v c d -> ((v a :. v b) := c) -> (v a :. v b) := d Source #

(.#...) :: (Proxy ~ v a, Proxy ~ v b, Category v, Covariant (v a), Covariant (v b)) => v d e -> ((v a :. (v b :. v c)) := d) -> (v a :. (v b :. v c)) := e Source #

(.#....) :: (Proxy ~ v a, Proxy ~ v b, Proxy ~ v c, Category v, Covariant (v a), Covariant (v b), Covariant (v c)) => v e f -> ((v a :. (v b :. (v c :. v d))) := e) -> (v a :. (v b :. (v c :. v d))) := f Source #

(<$$) :: Covariant u => b -> ((Proxy :. u) := a) -> (Proxy :. u) := b Source #

(<$$$) :: (Covariant u, Covariant v) => b -> ((Proxy :. (u :. v)) := a) -> (Proxy :. (u :. v)) := b Source #

(<$$$$) :: (Covariant u, Covariant v, Covariant w) => b -> ((Proxy :. (u :. (v :. w))) := a) -> (Proxy :. (u :. (v :. w))) := b Source #

($$>) :: Covariant u => ((Proxy :. u) := a) -> b -> (Proxy :. u) := b Source #

($$$>) :: (Covariant u, Covariant v) => ((Proxy :. (u :. v)) := a) -> b -> (Proxy :. (u :. v)) := b Source #

($$$$>) :: (Covariant u, Covariant v, Covariant w) => ((Proxy :. (u :. (v :. w))) := a) -> b -> (Proxy :. (u :. (v :. w))) := b Source #

Applicative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Proxy

Methods

(<*>) :: Proxy (a -> b) -> Proxy a -> Proxy b Source #

apply :: Proxy (a -> b) -> Proxy a -> Proxy b Source #

(*>) :: Proxy a -> Proxy b -> Proxy b Source #

(<*) :: Proxy a -> Proxy b -> Proxy a Source #

forever :: Proxy a -> Proxy b Source #

(<%>) :: Proxy a -> Proxy (a -> b) -> Proxy b Source #

(<**>) :: Applicative u => ((Proxy :. u) := (a -> b)) -> ((Proxy :. u) := a) -> (Proxy :. u) := b Source #

(<***>) :: (Applicative u, Applicative v) => ((Proxy :. (u :. v)) := (a -> b)) -> ((Proxy :. (u :. v)) := a) -> (Proxy :. (u :. v)) := b Source #

(<****>) :: (Applicative u, Applicative v, Applicative w) => ((Proxy :. (u :. (v :. w))) := (a -> b)) -> ((Proxy :. (u :. (v :. w))) := a) -> (Proxy :. (u :. (v :. w))) := b Source #

Alternative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Proxy

Methods

(<+>) :: Proxy a -> Proxy a -> Proxy a Source #

alter :: Proxy a -> Proxy a -> Proxy a Source #

Monad (Proxy :: Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Proxy

Bindable (Proxy :: Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Proxy

Methods

(=<<) :: (a -> Proxy b) -> Proxy a -> Proxy b Source #

Extendable (Proxy :: Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Proxy

Methods

(<<=) :: (Proxy a -> b) -> Proxy a -> Proxy b Source #

Pointable (Proxy :: Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Proxy

Methods

point :: a -> Proxy a Source #

Covariant_ (Proxy :: Type -> Type) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Proxy

Methods

(-<$>-) :: (a -> b) -> Proxy a -> Proxy b Source #

Distributive (Proxy :: Type -> Type) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Proxy

Methods

(-<<) :: Covariant_ u (->) (->) => (a -> Proxy b) -> u a -> Proxy (u b) Source #