Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Pandora.Paradigm.Primary.Transformer.Backwards
Documentation
newtype Backwards t a Source #
Constructors
Backwards (t a) |
Instances
Liftable (Backwards :: (Type -> Type) -> Type -> Type) Source # | |
Lowerable (Backwards :: (Type -> Type) -> Type -> Type) Source # | |
Hoistable (Backwards :: (Type -> Type) -> Type -> Type) Source # | |
Contravariant t => Contravariant (Backwards t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Backwards Methods (>$<) :: (a -> b) -> Backwards t b -> Backwards t a Source # contramap :: (a -> b) -> Backwards t b -> Backwards t a Source # (>$) :: b -> Backwards t b -> Backwards t a Source # ($<) :: Backwards t b -> b -> Backwards t a Source # full :: Backwards t () -> Backwards t a Source # (>&<) :: Backwards t b -> (a -> b) -> Backwards t a Source # (>$$<) :: Contravariant u => (a -> b) -> ((Backwards t :. u) := a) -> (Backwards t :. u) := b Source # (>$$$<) :: (Contravariant u, Contravariant v) => (a -> b) -> ((Backwards t :. (u :. v)) := b) -> (Backwards t :. (u :. v)) := a Source # (>$$$$<) :: (Contravariant u, Contravariant v, Contravariant w) => (a -> b) -> ((Backwards t :. (u :. (v :. w))) := a) -> (Backwards t :. (u :. (v :. w))) := b Source # (>&&<) :: Contravariant u => ((Backwards t :. u) := a) -> (a -> b) -> (Backwards t :. u) := b Source # (>&&&<) :: (Contravariant u, Contravariant v) => ((Backwards t :. (u :. v)) := b) -> (a -> b) -> (Backwards t :. (u :. v)) := a Source # (>&&&&<) :: (Contravariant u, Contravariant v, Contravariant w) => ((Backwards t :. (u :. (v :. w))) := a) -> (a -> b) -> (Backwards t :. (u :. (v :. w))) := b Source # | |
Covariant t => Covariant (Backwards t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Backwards Methods (<$>) :: (a -> b) -> Backwards t a -> Backwards t b Source # comap :: (a -> b) -> Backwards t a -> Backwards t b Source # (<$) :: a -> Backwards t b -> Backwards t a Source # ($>) :: Backwards t a -> b -> Backwards t b Source # void :: Backwards t a -> Backwards t () Source # loeb :: Backwards t (a <:= Backwards t) -> Backwards t a Source # (<&>) :: Backwards t a -> (a -> b) -> Backwards t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Backwards t :. u) := a) -> (Backwards t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Backwards t :. (u :. v)) := a) -> (Backwards t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Backwards t :. (u :. (v :. w))) := a) -> (Backwards t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Backwards t :. u) := a) -> (a -> b) -> (Backwards t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Backwards t :. (u :. v)) := a) -> (a -> b) -> (Backwards t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Backwards t :. (u :. (v :. w))) := a) -> (a -> b) -> (Backwards t :. (u :. (v :. w))) := b Source # (.#..) :: (Backwards t ~ v a, Category v) => v c d -> ((v a :. v b) := c) -> (v a :. v b) := d Source # (.#...) :: (Backwards t ~ v a, Backwards t ~ v b, Category v, Covariant (v a), Covariant (v b)) => v d e -> ((v a :. (v b :. v c)) := d) -> (v a :. (v b :. v c)) := e Source # (.#....) :: (Backwards t ~ v a, Backwards t ~ v b, Backwards t ~ v c, Category v, Covariant (v a), Covariant (v b), Covariant (v c)) => v e f -> ((v a :. (v b :. (v c :. v d))) := e) -> (v a :. (v b :. (v c :. v d))) := f Source # (<$$) :: Covariant u => b -> ((Backwards t :. u) := a) -> (Backwards t :. u) := b Source # (<$$$) :: (Covariant u, Covariant v) => b -> ((Backwards t :. (u :. v)) := a) -> (Backwards t :. (u :. v)) := b Source # (<$$$$) :: (Covariant u, Covariant v, Covariant w) => b -> ((Backwards t :. (u :. (v :. w))) := a) -> (Backwards t :. (u :. (v :. w))) := b Source # ($$>) :: Covariant u => ((Backwards t :. u) := a) -> b -> (Backwards t :. u) := b Source # ($$$>) :: (Covariant u, Covariant v) => ((Backwards t :. (u :. v)) := a) -> b -> (Backwards t :. (u :. v)) := b Source # ($$$$>) :: (Covariant u, Covariant v, Covariant w) => ((Backwards t :. (u :. (v :. w))) := a) -> b -> (Backwards t :. (u :. (v :. w))) := b Source # | |
Interpreted (Backwards t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Backwards Methods run :: Backwards t a -> Primary (Backwards t) a Source # unite :: Primary (Backwards t) a -> Backwards t a Source # (||=) :: Interpreted u => (Primary (Backwards t) a -> Primary u b) -> Backwards t a -> u b Source # (=||) :: Interpreted u => (Backwards t a -> u b) -> Primary (Backwards t) a -> Primary u b Source # (<$||=) :: (Covariant j, Interpreted u) => (Primary (Backwards t) a -> Primary u b) -> (j := Backwards t a) -> j := u b Source # (<$$||=) :: (Covariant j, Covariant k, Interpreted u) => (Primary (Backwards t) a -> Primary u b) -> ((j :. k) := Backwards t a) -> (j :. k) := u b Source # (<$$$||=) :: (Covariant j, Covariant k, Covariant l, Interpreted u) => (Primary (Backwards t) a -> Primary u b) -> ((j :. (k :. l)) := Backwards t a) -> (j :. (k :. l)) := u b Source # (<$$$$||=) :: (Covariant j, Covariant k, Covariant l, Covariant m, Interpreted u) => (Primary (Backwards t) a -> Primary u b) -> ((j :. (k :. (l :. m))) := Backwards t a) -> (j :. (k :. (l :. m))) := u b Source # (=||$>) :: (Covariant j, Interpreted u) => (Backwards t a -> u b) -> (j := Primary (Backwards t) a) -> j := Primary u b Source # (=||$$>) :: (Covariant j, Covariant k, Interpreted u) => (Backwards t a -> u b) -> ((j :. k) := Primary (Backwards t) a) -> (j :. k) := Primary u b Source # (=||$$$>) :: (Covariant j, Covariant k, Covariant l, Interpreted u) => (Backwards t a -> u b) -> ((j :. (k :. l)) := Primary (Backwards t) a) -> (j :. (k :. l)) := Primary u b Source # (=||$$$$>) :: (Covariant j, Covariant k, Covariant l, Covariant m, Interpreted u) => (Backwards t a -> u b) -> ((j :. (k :. (l :. m))) := Primary (Backwards t) a) -> (j :. (k :. (l :. m))) := Primary u b Source # | |
Semimonoidal t (:*:) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) => Semimonoidal (Backwards t) (:*:) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # | |
Extractable t ((->) :: Type -> Type -> Type) => Extractable (Backwards t) ((->) :: Type -> Type -> Type) Source # | |
Pointable t ((->) :: Type -> Type -> Type) => Pointable (Backwards t) ((->) :: Type -> Type -> Type) Source # | |
Covariant_ t ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) => Covariant_ (Backwards t) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # | |
Distributive t ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) => Distributive (Backwards t) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # | |
Traversable t ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) => Traversable (Backwards t) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Backwards Methods (<<-) :: (Covariant_ u (->) (->), Pointable u (->), Semimonoidal u (:*:) (->) (->)) => (a -> u b) -> Backwards t a -> u (Backwards t b) Source # | |
type Primary (Backwards t) a Source # | |