Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Pandora.Paradigm.Schemes.UT
Documentation
newtype UT ct cu t u a Source #
Instances
(Pointable u ((->) :: Type -> Type -> Type), Bindable u ((->) :: Type -> Type -> Type)) => Catchable e (Conclusion e <.:> u :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion Methods catch :: forall (a :: k). (Conclusion e <.:> u) a -> (e -> (Conclusion e <.:> u) a) -> (Conclusion e <.:> u) a Source # | |
(Covariant t, Covariant u) => Covariant (t <.:> u) Source # | |
Defined in Pandora.Paradigm.Schemes.UT Methods (<$>) :: (a -> b) -> (t <.:> u) a -> (t <.:> u) b Source # comap :: (a -> b) -> (t <.:> u) a -> (t <.:> u) b Source # (<$) :: a -> (t <.:> u) b -> (t <.:> u) a Source # ($>) :: (t <.:> u) a -> b -> (t <.:> u) b Source # void :: (t <.:> u) a -> (t <.:> u) () Source # loeb :: (t <.:> u) (a <:= (t <.:> u)) -> (t <.:> u) a Source # (<&>) :: (t <.:> u) a -> (a -> b) -> (t <.:> u) b Source # (<$$>) :: Covariant u0 => (a -> b) -> (((t <.:> u) :. u0) := a) -> ((t <.:> u) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> (((t <.:> u) :. (u0 :. v)) := a) -> ((t <.:> u) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> (((t <.:> u) :. (u0 :. (v :. w))) := a) -> ((t <.:> u) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => (((t <.:> u) :. u0) := a) -> (a -> b) -> ((t <.:> u) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => (((t <.:> u) :. (u0 :. v)) := a) -> (a -> b) -> ((t <.:> u) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => (((t <.:> u) :. (u0 :. (v :. w))) := a) -> (a -> b) -> ((t <.:> u) :. (u0 :. (v :. w))) := b Source # (.#..) :: ((t <.:> u) ~ v a, Category v) => v c d -> ((v a :. v b) := c) -> (v a :. v b) := d Source # (.#...) :: ((t <.:> u) ~ v a, (t <.:> u) ~ v b, Category v, Covariant (v a), Covariant (v b)) => v d e -> ((v a :. (v b :. v c)) := d) -> (v a :. (v b :. v c)) := e Source # (.#....) :: ((t <.:> u) ~ v a, (t <.:> u) ~ v b, (t <.:> u) ~ v c, Category v, Covariant (v a), Covariant (v b), Covariant (v c)) => v e f -> ((v a :. (v b :. (v c :. v d))) := e) -> (v a :. (v b :. (v c :. v d))) := f Source # (<$$) :: Covariant u0 => b -> (((t <.:> u) :. u0) := a) -> ((t <.:> u) :. u0) := b Source # (<$$$) :: (Covariant u0, Covariant v) => b -> (((t <.:> u) :. (u0 :. v)) := a) -> ((t <.:> u) :. (u0 :. v)) := b Source # (<$$$$) :: (Covariant u0, Covariant v, Covariant w) => b -> (((t <.:> u) :. (u0 :. (v :. w))) := a) -> ((t <.:> u) :. (u0 :. (v :. w))) := b Source # ($$>) :: Covariant u0 => (((t <.:> u) :. u0) := a) -> b -> ((t <.:> u) :. u0) := b Source # ($$$>) :: (Covariant u0, Covariant v) => (((t <.:> u) :. (u0 :. v)) := a) -> b -> ((t <.:> u) :. (u0 :. v)) := b Source # ($$$$>) :: (Covariant u0, Covariant v, Covariant w) => (((t <.:> u) :. (u0 :. (v :. w))) := a) -> b -> ((t <.:> u) :. (u0 :. (v :. w))) := b Source # | |
(Applicative t, Applicative u) => Applicative (t <.:> u) Source # | |
Defined in Pandora.Paradigm.Schemes.UT Methods (<*>) :: (t <.:> u) (a -> b) -> (t <.:> u) a -> (t <.:> u) b Source # apply :: (t <.:> u) (a -> b) -> (t <.:> u) a -> (t <.:> u) b Source # (*>) :: (t <.:> u) a -> (t <.:> u) b -> (t <.:> u) b Source # (<*) :: (t <.:> u) a -> (t <.:> u) b -> (t <.:> u) a Source # forever :: (t <.:> u) a -> (t <.:> u) b Source # (<%>) :: (t <.:> u) a -> (t <.:> u) (a -> b) -> (t <.:> u) b Source # (<**>) :: Applicative u0 => (((t <.:> u) :. u0) := (a -> b)) -> (((t <.:> u) :. u0) := a) -> ((t <.:> u) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => (((t <.:> u) :. (u0 :. v)) := (a -> b)) -> (((t <.:> u) :. (u0 :. v)) := a) -> ((t <.:> u) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => (((t <.:> u) :. (u0 :. (v :. w))) := (a -> b)) -> (((t <.:> u) :. (u0 :. (v :. w))) := a) -> ((t <.:> u) :. (u0 :. (v :. w))) := b Source # | |
(Semigroup e, Applicative u) => Applicative ((:*:) e <.:> u) Source # | |
Defined in Pandora.Paradigm.Inventory.Accumulator Methods (<*>) :: ((:*:) e <.:> u) (a -> b) -> ((:*:) e <.:> u) a -> ((:*:) e <.:> u) b Source # apply :: ((:*:) e <.:> u) (a -> b) -> ((:*:) e <.:> u) a -> ((:*:) e <.:> u) b Source # (*>) :: ((:*:) e <.:> u) a -> ((:*:) e <.:> u) b -> ((:*:) e <.:> u) b Source # (<*) :: ((:*:) e <.:> u) a -> ((:*:) e <.:> u) b -> ((:*:) e <.:> u) a Source # forever :: ((:*:) e <.:> u) a -> ((:*:) e <.:> u) b Source # (<%>) :: ((:*:) e <.:> u) a -> ((:*:) e <.:> u) (a -> b) -> ((:*:) e <.:> u) b Source # (<**>) :: Applicative u0 => ((((:*:) e <.:> u) :. u0) := (a -> b)) -> ((((:*:) e <.:> u) :. u0) := a) -> (((:*:) e <.:> u) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => ((((:*:) e <.:> u) :. (u0 :. v)) := (a -> b)) -> ((((:*:) e <.:> u) :. (u0 :. v)) := a) -> (((:*:) e <.:> u) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => ((((:*:) e <.:> u) :. (u0 :. (v :. w))) := (a -> b)) -> ((((:*:) e <.:> u) :. (u0 :. (v :. w))) := a) -> (((:*:) e <.:> u) :. (u0 :. (v :. w))) := b Source # | |
(Traversable t ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Bindable t ((->) :: Type -> Type -> Type), Semimonoidal u (:*:) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Pointable u ((->) :: Type -> Type -> Type), Bindable u ((->) :: Type -> Type -> Type)) => Bindable (t <.:> u) ((->) :: Type -> Type -> Type) Source # | |
(Semigroup e, Pointable u ((->) :: Type -> Type -> Type), Bindable u ((->) :: Type -> Type -> Type)) => Bindable ((:*:) e <.:> u) ((->) :: Type -> Type -> Type) Source # | |
(Semigroup e, Extendable u ((->) :: Type -> Type -> Type)) => Extendable (((->) e :: Type -> Type) <.:> u) ((->) :: Type -> Type -> Type) Source # | |
(Extractable t ((->) :: Type -> Type -> Type), Extractable u ((->) :: Type -> Type -> Type)) => Extractable (t <.:> u) ((->) :: Type -> Type -> Type) Source # | |
Defined in Pandora.Paradigm.Schemes.UT | |
(Pointable t ((->) :: Type -> Type -> Type), Pointable u ((->) :: Type -> Type -> Type)) => Pointable (t <.:> u) ((->) :: Type -> Type -> Type) Source # | |
Defined in Pandora.Paradigm.Schemes.UT | |
(Pointable u ((->) :: Type -> Type -> Type), Monoid e) => Pointable ((:*:) e <.:> u) ((->) :: Type -> Type -> Type) Source # | |
(Covariant_ t ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Covariant_ u ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type)) => Covariant_ (t <.:> u) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # | |
(Covariant (t <.:> v), Covariant (w <:.> u), Adjoint v u ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Adjoint t w ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type)) => Adjoint (t <.:> v) (w <:.> u) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # | |
(Covariant (t <.:> v), Covariant (w <.:> u), Adjoint t u ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Adjoint v w ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type)) => Adjoint (t <.:> v) (w <.:> u) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # | |
(Covariant (v <:.> t), Covariant (w <.:> u), Adjoint t u ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Adjoint v w ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type)) => Adjoint (v <:.> t) (w <.:> u) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # | |
Pointable t ((->) :: Type -> Type -> Type) => Liftable (UT Covariant Covariant t) Source # | |
Defined in Pandora.Paradigm.Schemes.UT | |
Extractable t ((->) :: Type -> Type -> Type) => Lowerable (UT Covariant Covariant t) Source # | |
Defined in Pandora.Paradigm.Schemes.UT | |
Interpreted (UT ct cu t u) Source # | |
Defined in Pandora.Paradigm.Schemes.UT Methods run :: UT ct cu t u a -> Primary (UT ct cu t u) a Source # unite :: Primary (UT ct cu t u) a -> UT ct cu t u a Source # (||=) :: Interpreted u0 => (Primary (UT ct cu t u) a -> Primary u0 b) -> UT ct cu t u a -> u0 b Source # (=||) :: Interpreted u0 => (UT ct cu t u a -> u0 b) -> Primary (UT ct cu t u) a -> Primary u0 b Source # (<$||=) :: (Covariant j, Interpreted u0) => (Primary (UT ct cu t u) a -> Primary u0 b) -> (j := UT ct cu t u a) -> j := u0 b Source # (<$$||=) :: (Covariant j, Covariant k, Interpreted u0) => (Primary (UT ct cu t u) a -> Primary u0 b) -> ((j :. k) := UT ct cu t u a) -> (j :. k) := u0 b Source # (<$$$||=) :: (Covariant j, Covariant k, Covariant l, Interpreted u0) => (Primary (UT ct cu t u) a -> Primary u0 b) -> ((j :. (k :. l)) := UT ct cu t u a) -> (j :. (k :. l)) := u0 b Source # (<$$$$||=) :: (Covariant j, Covariant k, Covariant l, Covariant m, Interpreted u0) => (Primary (UT ct cu t u) a -> Primary u0 b) -> ((j :. (k :. (l :. m))) := UT ct cu t u a) -> (j :. (k :. (l :. m))) := u0 b Source # (=||$>) :: (Covariant j, Interpreted u0) => (UT ct cu t u a -> u0 b) -> (j := Primary (UT ct cu t u) a) -> j := Primary u0 b Source # (=||$$>) :: (Covariant j, Covariant k, Interpreted u0) => (UT ct cu t u a -> u0 b) -> ((j :. k) := Primary (UT ct cu t u) a) -> (j :. k) := Primary u0 b Source # (=||$$$>) :: (Covariant j, Covariant k, Covariant l, Interpreted u0) => (UT ct cu t u a -> u0 b) -> ((j :. (k :. l)) := Primary (UT ct cu t u) a) -> (j :. (k :. l)) := Primary u0 b Source # (=||$$$$>) :: (Covariant j, Covariant k, Covariant l, Covariant m, Interpreted u0) => (UT ct cu t u a -> u0 b) -> ((j :. (k :. (l :. m))) := Primary (UT ct cu t u) a) -> (j :. (k :. (l :. m))) := Primary u0 b Source # | |
type Primary (UT ct cu t u) a Source # | |
Defined in Pandora.Paradigm.Schemes.UT |
type (>.:<) = UT Contravariant Contravariant infixr 3 Source #