Pandora.Paradigm.Primary.Functor.Identity
newtype Identity a Source #
Constructors
Defined in Pandora.Paradigm.Primary.Functor.Identity
Associated Types
type Representation Identity Source #
Methods
(<#>) :: Representation Identity -> a <:= Identity Source #
tabulate :: (Representation Identity -> a) -> Identity a Source #
index :: Identity a -> Representation Identity -> a Source #
(-|) :: (Identity a -> b) -> a -> Identity b Source #
(|-) :: (a -> Identity b) -> Identity a -> b Source #
point :: a -> Identity a Source #
extract :: Identity a -> a Source #
(<<=) :: (Identity a -> b) -> Identity a -> Identity b Source #
(=<<) :: (a -> Identity b) -> Identity a -> Identity b Source #
(-<$>-) :: (a -> b) -> Identity a -> Identity b Source #
(<<-) :: (Covariant u (->) (->), Pointable u (->), Semimonoidal u (->) (:*:) (:*:)) => (a -> u b) -> Identity a -> u (Identity b) Source #
(+) :: Identity a -> Identity a -> Identity a Source #
(*) :: Identity a -> Identity a -> Identity a Source #
zero :: Identity a Source #
one :: Identity a Source #
invert :: Identity a -> Identity a Source #
(-) :: Identity a -> Identity a -> Identity a Source #
(\/) :: Identity a -> Identity a -> Identity a Source #
(/\) :: Identity a -> Identity a -> Identity a Source #
(==) :: Identity a -> Identity a -> Boolean Source #
(!=) :: Identity a -> Identity a -> Boolean Source #
(<=>) :: Identity a -> Identity a -> Ordering Source #
(<) :: Identity a -> Identity a -> Boolean Source #
(<=) :: Identity a -> Identity a -> Boolean Source #
(>) :: Identity a -> Identity a -> Boolean Source #
(>=) :: Identity a -> Identity a -> Boolean Source #
Defined in Pandora.Paradigm.Inventory.Optics
(.) :: Lens Identity b c -> Lens Identity a b -> Lens Identity a c Source #
identity :: Lens Identity a a Source #
($) :: Lens Identity (Lens Identity a b) (Lens Identity a b) Source #
(#) :: Lens Identity (Lens Identity a b) (Lens Identity a b) Source #
Defined in Pandora.Paradigm.Structure.Some.Stream
(<<=) :: (Tap ((Stream <:.:> Stream) := (:*:)) a -> b) -> Tap ((Stream <:.:> Stream) := (:*:)) a -> Tap ((Stream <:.:> Stream) := (:*:)) b Source #
type Morphing ('Rotate 'Right) (Tap ((Stream <:.:> Stream) := (:*:))) :: Type -> Type Source #
morphing :: (Tagged ('Rotate 'Right) <:.> Tap ((Stream <:.:> Stream) := (:*:))) ~> Morphing ('Rotate 'Right) (Tap ((Stream <:.:> Stream) := (:*:))) Source #
type Morphing ('Rotate 'Left) (Tap ((Stream <:.:> Stream) := (:*:))) :: Type -> Type Source #
morphing :: (Tagged ('Rotate 'Left) <:.> Tap ((Stream <:.:> Stream) := (:*:))) ~> Morphing ('Rotate 'Left) (Tap ((Stream <:.:> Stream) := (:*:))) Source #
Defined in Pandora.Paradigm.Structure.Some.Binary
type Morphing ('Rotate 'Up) ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:)) :: Type -> Type Source #
morphing :: (Tagged ('Rotate 'Up) <:.> ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:))) ~> Morphing ('Rotate 'Up) ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:)) Source #
type Morphing ('Rotate ('Down 'Right)) ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:)) :: Type -> Type Source #
morphing :: (Tagged ('Rotate ('Down 'Right)) <:.> ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:))) ~> Morphing ('Rotate ('Down 'Right)) ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:)) Source #
type Morphing ('Rotate ('Down 'Left)) ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:)) :: Type -> Type Source #
morphing :: (Tagged ('Rotate ('Down 'Left)) <:.> ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:))) ~> Morphing ('Rotate ('Down 'Left)) ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:)) Source #
type Arguments (P_Q_T (->) Store Identity source target) = (args :: Type) Source #
imply :: Arguments (P_Q_T (->) Store Identity source target) Source #