Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Pandora.Paradigm.Schemes.TUT
Documentation
newtype TUT ct ct' cu t t' u a Source #
Instances
(Covariant t ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Covariant t' ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Covariant u ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Semimonoidal t ((->) :: Type -> Type -> Type) (:*:) (:*:), Semimonoidal u ((->) :: Type -> Type -> Type) (:*:) (:*:), Semimonoidal t' ((->) :: Type -> Type -> Type) (:*:) (:*:)) => Semimonoidal ((t <:<.>:> t') := u :: Type -> Type) ((->) :: Type -> Type -> Type) (:*:) (:*:) Source # | |
(Covariant t ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Covariant t' ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Pointable u ((->) :: Type -> Type -> Type), Adjoint t' t ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type)) => Pointable ((t <:<.>:> t') := u) ((->) :: Type -> Type -> Type) Source # | |
(Covariant t ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Covariant t' ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Adjoint t t' ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Extractable u ((->) :: Type -> Type -> Type)) => Extractable ((t <:<.>:> t') := u) ((->) :: Type -> Type -> Type) Source # | |
(Adjoint t' t ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Extendable u ((->) :: Type -> Type -> Type)) => Extendable ((t' <:<.>:> t) := u) ((->) :: Type -> Type -> Type) Source # | |
(Covariant t ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Covariant t' ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Covariant u ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type)) => Covariant ((t <:<.>:> t') := u) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # | |
(Adjoint t' t ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Distributive t ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type)) => Liftable (t <:<.>:> t') Source # | |
(Adjoint t t' ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Distributive t' ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type)) => Lowerable (t <:<.>:> t') Source # | |
(Covariant ((t <:<.>:> u) t') ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Covariant ((v <:<.>:> w) v') ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Adjoint t w ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Adjoint t' v' ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Adjoint t v ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Adjoint u v ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type), Adjoint v' t' ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type)) => Adjoint ((t <:<.>:> u) t') ((v <:<.>:> w) v') ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # | |
Interpreted (TUT ct ct' cu t t' u) Source # | |
Defined in Pandora.Paradigm.Schemes.TUT Methods run :: TUT ct ct' cu t t' u a -> Primary (TUT ct ct' cu t t' u) a Source # unite :: Primary (TUT ct ct' cu t t' u) a -> TUT ct ct' cu t t' u a Source # (||=) :: Interpreted u0 => (Primary (TUT ct ct' cu t t' u) a -> Primary u0 b) -> TUT ct ct' cu t t' u a -> u0 b Source # (=||) :: Interpreted u0 => (TUT ct ct' cu t t' u a -> u0 b) -> Primary (TUT ct ct' cu t t' u) a -> Primary u0 b Source # (<$||=) :: (Covariant j (->) (->), Interpreted u0) => (Primary (TUT ct ct' cu t t' u) a -> Primary u0 b) -> (j := TUT ct ct' cu t t' u a) -> j := u0 b Source # (<$$||=) :: (Covariant j (->) (->), Covariant k (->) (->), Interpreted u0) => (Primary (TUT ct ct' cu t t' u) a -> Primary u0 b) -> ((j :. k) := TUT ct ct' cu t t' u a) -> (j :. k) := u0 b Source # (<$$$||=) :: (Covariant j (->) (->), Covariant k (->) (->), Covariant l (->) (->), Interpreted u0) => (Primary (TUT ct ct' cu t t' u) a -> Primary u0 b) -> ((j :. (k :. l)) := TUT ct ct' cu t t' u a) -> (j :. (k :. l)) := u0 b Source # (<$$$$||=) :: (Covariant j (->) (->), Covariant k (->) (->), Covariant l (->) (->), Covariant m (->) (->), Interpreted u0) => (Primary (TUT ct ct' cu t t' u) a -> Primary u0 b) -> ((j :. (k :. (l :. m))) := TUT ct ct' cu t t' u a) -> (j :. (k :. (l :. m))) := u0 b Source # (=||$>) :: (Covariant j (->) (->), Interpreted u0) => (TUT ct ct' cu t t' u a -> u0 b) -> (j := Primary (TUT ct ct' cu t t' u) a) -> j := Primary u0 b Source # (=||$$>) :: (Covariant j (->) (->), Covariant k (->) (->), Interpreted u0) => (TUT ct ct' cu t t' u a -> u0 b) -> ((j :. k) := Primary (TUT ct ct' cu t t' u) a) -> (j :. k) := Primary u0 b Source # (=||$$$>) :: (Covariant j (->) (->), Covariant k (->) (->), Covariant l (->) (->), Interpreted u0) => (TUT ct ct' cu t t' u a -> u0 b) -> ((j :. (k :. l)) := Primary (TUT ct ct' cu t t' u) a) -> (j :. (k :. l)) := Primary u0 b Source # (=||$$$$>) :: (Covariant j (->) (->), Covariant k (->) (->), Covariant l (->) (->), Covariant m (->) (->), Interpreted u0) => (TUT ct ct' cu t t' u a -> u0 b) -> ((j :. (k :. (l :. m))) := Primary (TUT ct ct' cu t t' u) a) -> (j :. (k :. (l :. m))) := Primary u0 b Source # | |
type Primary (TUT ct ct' cu t t' u) a Source # | |
type (>:<.>:<) = TUT Contravariant Covariant Contravariant infix 3 Source #
type (>:>.<:>) = TUT Contravariant Contravariant Covariant infix 3 Source #
type (<:>.<:<) = TUT Covariant Contravariant Contravariant infix 3 Source #
type (>:>.<:<) = TUT Contravariant Contravariant Contravariant infix 3 Source #