| Safe Haskell | Safe-Inferred |
|---|---|
| Language | Haskell2010 |
Pandora.Paradigm.Schemes.TU
Documentation
newtype TU ct cu t u a Source #
Instances
| Stack List Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
| Measurable 'Length List Source # | |
| Measurable 'Heighth Binary Source # | |
| (Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Monoidal (<--) ((->) :: Type -> Type -> Type) (:*:) (:*:) t, Monoidal (<--) ((->) :: Type -> Type -> Type) (:*:) (:*:) u) => Monoidal (<--) ((->) :: Type -> Type -> Type) (:*:) (:*:) (t <:.> u) Source # | |
| Monotonic a ((t :. Construction t) := a) => Monotonic a ((t <:.> Construction t) := a) Source # | |
| Semigroup (List a) Source # | |
| Monoid (List a) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
| Setoid a => Setoid (List a) Source # | |
| Nullable List Source # | |
| Nullable Rose Source # | |
| Nullable Binary Source # | |
| (Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) u) => Semimonoidal (<--) (:*:) (:*:) (t <:.> u :: Type -> Type) Source # | |
| Morphable ('Into (Tap ((List <:.:> List) := (:*:)))) List Source # | |
| Morphable ('Delete ('All :: a -> Occurrence a) :: Morph (a -> Occurrence a)) List Source # | |
| Morphable ('Delete ('First :: a -> Occurrence a) :: Morph (a -> Occurrence a)) List Source # | |
| Morphable ('Find ('Element :: a -> Morph a) :: Morph (a -> Morph a)) List Source # | |
| Morphable ('Into (o ds)) (Construction Wye) => Morphable ('Into (o ds) :: Morph a) Binary Source # | |
| Morphable ('Rotate ('Right ('Zig :: a -> Splay a)) :: Morph (Wye (a -> Splay a))) Binary Source # | |
| Morphable ('Rotate ('Left ('Zig :: a -> Splay a)) :: Morph (Wye (a -> Splay a))) Binary Source # | |
| Morphable ('Rotate ('Right ('Zig ('Zag :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
| Morphable ('Rotate ('Left ('Zig ('Zag :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
| Morphable ('Rotate ('Right ('Zig ('Zig :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
| Morphable ('Rotate ('Left ('Zig ('Zig :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
| (Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal ((->) :: Type -> Type -> Type) (:*:) (:+:) t) => Semimonoidal ((->) :: Type -> Type -> Type) (:*:) (:+:) (t <:.> u :: Type -> Type) Source # | |
| (Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal ((->) :: Type -> Type -> Type) (:*:) (:*:) t, Semimonoidal ((->) :: Type -> Type -> Type) (:*:) (:*:) u) => Semimonoidal ((->) :: Type -> Type -> Type) (:*:) (:*:) (t <:.> u :: Type -> Type) Source # | |
| Morphable ('Into (Comprehension Maybe)) (Tap ((List <:.:> List) := (:*:))) Source # | |
| Morphable ('Into (Tap ((Construction Maybe <:.:> Construction Maybe) := (:*:)))) (Tap ((List <:.:> List) := (:*:))) Source # | |
| Morphable ('Into (Tap ((List <:.:> List) := (:*:)))) (Construction Maybe) Source # | |
| Morphable ('Into (Tap ((List <:.:> List) := (:*:)))) (Tap ((Construction Maybe <:.:> Construction Maybe) := (:*:))) Source # | |
| Morphable ('Into List) (Construction Maybe) Source # | |
| Morphable ('Into List) (Tap ((Construction Maybe <:.:> Construction Maybe) := (:*:))) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
| Morphable ('Into List) (Tap ((List <:.:> List) := (:*:))) Source # | |
| Morphable ('Into List) (Vector r) Source # | |
| Morphable ('Into Binary) (Construction Wye) Source # | |
| Morphable ('Rotate ('Right :: a -> Wye a) :: Morph (a -> Wye a)) (Tap ((List <:.:> List) := (:*:))) Source # | |
| Morphable ('Rotate ('Left :: a -> Wye a) :: Morph (a -> Wye a)) (Tap ((List <:.:> List) := (:*:))) Source # | |
| Setoid key => Morphable ('Lookup ('Key :: a -> Morph a) :: Morph (a -> Morph a)) (Prefixed List key) Source # | |
| Setoid k => Morphable ('Lookup ('Key :: a -> Morph a) :: Morph (a -> Morph a)) (Prefixed Rose k) Source # | |
| Chain k => Morphable ('Vary ('Element :: a -> Morph a) :: Morph (a -> Morph a)) (Prefixed Binary k) Source # | |
| Chain k => Morphable ('Lookup ('Key :: a -> Morph a) :: Morph (a -> Morph a)) (Prefixed Binary k) Source # | |
| Morphable ('Rotate ('Up :: a -> Vertical a) :: Morph (a -> Vertical a)) ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary | |
| Morphable ('Rotate ('Down ('Right :: a -> Wye a)) :: Morph (Vertical (a -> Wye a))) ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary | |
| Morphable ('Rotate ('Down ('Left :: a -> Wye a)) :: Morph (Vertical (a -> Wye a))) ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary | |
| Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Hoistable (TU Covariant Covariant t :: (Type -> Type) -> Type -> Type) Source # | |
Defined in Pandora.Paradigm.Schemes.TU Methods (/|\) :: forall (u :: Type -> Type) (v :: Type -> Type). Covariant (->) (->) u => (u ~> v) -> TU Covariant Covariant t u ~> TU Covariant Covariant t v Source # hoist :: forall (u :: Type -> Type) (v :: Type -> Type). Covariant (->) (->) u => (u ~> v) -> TU Covariant Covariant t u ~> TU Covariant Covariant t v Source # | |
| Extendable ((->) :: Type -> Type -> Type) (Tap ((List <:.:> List) := (:*:))) Source # | |
| Morphable ('Pop :: a -> Morph a) List Source # | |
| Morphable ('Push :: a -> Morph a) List Source # | |
| Morphable ('Insert :: a -> Morph a) Binary Source # | |
| Substructure ('Tail :: a -> Segment a) List Source # | |
| Substructure ('Root :: a -> Segment a) List Source # | |
| Substructure ('Right :: a -> Wye a) Binary Source # | |
| Substructure ('Left :: a -> Wye a) Binary Source # | |
| Substructure ('Tail :: a -> Segment a) (Construction List) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Rose Associated Types type Available 'Tail (Construction List) :: Type -> Type Source # type Substance 'Tail (Construction List) :: Type -> Type Source # Methods substructure :: ((Tagged 'Tail <:.> Construction List) #=@ Substance 'Tail (Construction List)) := Available 'Tail (Construction List) Source # sub :: (Construction List #=@ Substance 'Tail (Construction List)) := Available 'Tail (Construction List) Source # | |
| Substructure ('Root :: a -> Segment a) (Construction List) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Rose Associated Types type Available 'Root (Construction List) :: Type -> Type Source # type Substance 'Root (Construction List) :: Type -> Type Source # Methods substructure :: ((Tagged 'Root <:.> Construction List) #=@ Substance 'Root (Construction List)) := Available 'Root (Construction List) Source # sub :: (Construction List #=@ Substance 'Root (Construction List)) := Available 'Root (Construction List) Source # | |
| (Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Monoidal ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (:*:) (:+:) t) => Monoidal ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (:*:) (:+:) (t <:.> u) Source # | |
| (Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal ((->) :: Type -> Type -> Type) (:*:) (:*:) u, Monoidal ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (:*:) (:*:) t, Monoidal ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (:*:) (:*:) u) => Monoidal ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (:*:) (:*:) (t <:.> u) Source # | |
| Traversable ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Tap ((List <:.:> List) := (:*:))) Source # | |
| (Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u) => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <:.> u) Source # | |
| (Traversable ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Traversable ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u) => Traversable ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <:.> u) Source # | |
| (Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <.:> v), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (w <:.> u), Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) v u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t w) => Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <.:> v) (w <:.> u) Source # | |
| (Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (v <:.> t), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (w <.:> u), Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) v w) => Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (v <:.> t) (w <.:> u) Source # | |
| (Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (v <:.> t), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (u <:.> w), Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) v w) => Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (v <:.> t) (u <:.> w) Source # | |
| Extendable ((->) :: Type -> Type -> Type) u => Extendable ((->) :: Type -> Type -> Type) ((:*:) e <:.> u) Source # | |
| (Bindable ((->) :: Type -> Type -> Type) t, Distributive ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Bindable ((->) :: Type -> Type -> Type) u) => Bindable ((->) :: Type -> Type -> Type) (t <:.> u) Source # | |
| Monoidal ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (:*:) (:*:) t => Liftable ((->) :: Type -> Type -> Type) (TU Covariant Covariant t :: (Type -> Type) -> Type -> Type) Source # | |
| Monoidal (<--) ((->) :: Type -> Type -> Type) (:*:) (:*:) t => Lowerable ((->) :: Type -> Type -> Type) (TU Covariant Covariant t :: (Type -> Type) -> Type -> Type) Source # | |
| Interpreted (TU ct cu t u) Source # | |
Defined in Pandora.Paradigm.Schemes.TU Methods run :: TU ct cu t u a -> Primary (TU ct cu t u) a Source # unite :: Primary (TU ct cu t u) a -> TU ct cu t u a Source # (||=) :: Interpreted u0 => (Primary (TU ct cu t u) a -> Primary u0 b) -> TU ct cu t u a -> u0 b Source # (=||) :: Interpreted u0 => (TU ct cu t u a -> u0 b) -> Primary (TU ct cu t u) a -> Primary u0 b Source # (<$||=) :: (Covariant (->) (->) j, Interpreted u0) => (Primary (TU ct cu t u) a -> Primary u0 b) -> (j := TU ct cu t u a) -> j := u0 b Source # (<$$||=) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted u0) => (Primary (TU ct cu t u) a -> Primary u0 b) -> ((j :. k) := TU ct cu t u a) -> (j :. k) := u0 b Source # (<$$$||=) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted u0) => (Primary (TU ct cu t u) a -> Primary u0 b) -> ((j :. (k :. l)) := TU ct cu t u a) -> (j :. (k :. l)) := u0 b Source # (<$$$$||=) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) m, Interpreted u0) => (Primary (TU ct cu t u) a -> Primary u0 b) -> ((j :. (k :. (l :. m))) := TU ct cu t u a) -> (j :. (k :. (l :. m))) := u0 b Source # (=||$>) :: (Covariant (->) (->) j, Interpreted u0) => (TU ct cu t u a -> u0 b) -> (j := Primary (TU ct cu t u) a) -> j := Primary u0 b Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted u0) => (TU ct cu t u a -> u0 b) -> ((j :. k) := Primary (TU ct cu t u) a) -> (j :. k) := Primary u0 b Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted u0) => (TU ct cu t u a -> u0 b) -> ((j :. (k :. l)) := Primary (TU ct cu t u) a) -> (j :. (k :. l)) := Primary u0 b Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) m, Interpreted u0) => (TU ct cu t u a -> u0 b) -> ((j :. (k :. (l :. m))) := Primary (TU ct cu t u) a) -> (j :. (k :. (l :. m))) := Primary u0 b Source # | |
| type Nonempty List Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
| type Nonempty Rose Source # | |
Defined in Pandora.Paradigm.Structure.Some.Rose | |
| type Nonempty Binary Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary | |
| type Combinative List Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
| type Measural 'Length List a Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
| type Measural 'Heighth Binary a Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary | |
| type Morphing ('Into (Tap ((List <:.:> List) := (:*:)))) List Source # | |
| type Morphing ('Delete ('All :: a -> Occurrence a) :: Morph (a -> Occurrence a)) List Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
| type Morphing ('Delete ('First :: a -> Occurrence a) :: Morph (a -> Occurrence a)) List Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
| type Morphing ('Find ('Element :: a -> Morph a) :: Morph (a -> Morph a)) List Source # | |
| type Morphing ('Into (o ds) :: Morph a) Binary Source # | |
| type Morphing ('Rotate ('Right ('Zig :: a -> Splay a)) :: Morph (Wye (a -> Splay a))) Binary Source # | |
| type Morphing ('Rotate ('Left ('Zig :: a -> Splay a)) :: Morph (Wye (a -> Splay a))) Binary Source # | |
| type Morphing ('Rotate ('Right ('Zig ('Zag :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
| type Morphing ('Rotate ('Left ('Zig ('Zag :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
| type Morphing ('Rotate ('Right ('Zig ('Zig :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
| type Morphing ('Rotate ('Left ('Zig ('Zig :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
| type Morphing ('Into (Comprehension Maybe)) (Tap ((List <:.:> List) := (:*:))) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
| type Morphing ('Into (Tap ((Construction Maybe <:.:> Construction Maybe) := (:*:)))) (Tap ((List <:.:> List) := (:*:))) Source # | |
| type Morphing ('Into (Tap ((List <:.:> List) := (:*:)))) (Construction Maybe) Source # | |
| type Morphing ('Into (Tap ((List <:.:> List) := (:*:)))) (Tap ((Construction Maybe <:.:> Construction Maybe) := (:*:))) Source # | |
| type Morphing ('Into List) (Construction Maybe) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
| type Morphing ('Into List) (Tap ((Construction Maybe <:.:> Construction Maybe) := (:*:))) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
| type Morphing ('Into List) (Tap ((List <:.:> List) := (:*:))) Source # | |
| type Morphing ('Into List) (Vector r) Source # | |
| type Morphing ('Into Binary) (Construction Wye) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary | |
| type Morphing ('Rotate ('Right :: a -> Wye a) :: Morph (a -> Wye a)) (Tap ((List <:.:> List) := (:*:))) Source # | |
| type Morphing ('Rotate ('Left :: a -> Wye a) :: Morph (a -> Wye a)) (Tap ((List <:.:> List) := (:*:))) Source # | |
| type Morphing ('Lookup ('Key :: a -> Morph a) :: Morph (a -> Morph a)) (Prefixed List key) Source # | |
| type Morphing ('Lookup ('Key :: a -> Morph a) :: Morph (a -> Morph a)) (Prefixed Rose k) Source # | |
| type Morphing ('Vary ('Element :: a -> Morph a) :: Morph (a -> Morph a)) (Prefixed Binary k) Source # | |
| type Morphing ('Lookup ('Key :: a -> Morph a) :: Morph (a -> Morph a)) (Prefixed Binary k) Source # | |
| type Morphing ('Rotate ('Up :: a -> Vertical a) :: Morph (a -> Vertical a)) ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary | |
| type Morphing ('Rotate ('Down ('Right :: a -> Wye a)) :: Morph (Vertical (a -> Wye a))) ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:)) Source # | |
| type Morphing ('Rotate ('Down ('Left :: a -> Wye a)) :: Morph (Vertical (a -> Wye a))) ((Construction Wye <:.:> (Bifurcation <:.> Bicursor)) := (:*:)) Source # | |
| type Zipper List (('Left :: a1 -> Wye a1) ::: ('Right :: a2 -> Wye a2) :: k -> k' -> Type) Source # | |
| type Morphing ('Pop :: a -> Morph a) List Source # | |
| type Morphing ('Push :: a -> Morph a) List Source # | |
| type Morphing ('Insert :: a -> Morph a) Binary Source # | |
| type Available ('Tail :: a -> Segment a) List Source # | |
| type Available ('Root :: a -> Segment a) List Source # | |
| type Available ('Right :: a -> Wye a) Binary Source # | |
| type Available ('Left :: a -> Wye a) Binary Source # | |
| type Substance ('Tail :: a -> Segment a) List Source # | |
| type Substance ('Root :: a -> Segment a) List Source # | |
| type Substance ('Right :: a -> Wye a) Binary Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary | |
| type Substance ('Left :: a -> Wye a) Binary Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary | |
| type Available ('Tail :: a -> Segment a) (Construction List) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Rose | |
| type Available ('Root :: a -> Segment a) (Construction List) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Rose | |
| type Substance ('Tail :: a -> Segment a) (Construction List) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Rose | |
| type Substance ('Root :: a -> Segment a) (Construction List) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Rose | |
| type Primary (TU ct cu t u) a Source # | |
Defined in Pandora.Paradigm.Schemes.TU | |
type (>:.<) = TU Contravariant Contravariant infixr 3 Source #