{-# LANGUAGE UndecidableInstances #-} module Pandora.Paradigm.Primary.Transformer.Tap where import Pandora.Core.Functor (type (:=)) import Pandora.Pattern.Semigroupoid ((.)) import Pandora.Pattern.Category ((#)) import Pandora.Pattern.Functor.Covariant (Covariant ((<-|-))) import Pandora.Pattern.Functor.Semimonoidal (Semimonoidal (mult)) import Pandora.Pattern.Functor.Monoidal (Monoidal (unit)) import Pandora.Pattern.Functor.Traversable (Traversable ((<<-))) import Pandora.Pattern.Functor.Extendable (Extendable ((<<=))) import Pandora.Pattern.Transformer.Liftable (Liftable (lift)) import Pandora.Pattern.Transformer.Lowerable (Lowerable (lower)) import Pandora.Pattern.Transformer.Hoistable (Hoistable ((/|\))) import Pandora.Paradigm.Inventory.Some.Store (Store (Store)) import Pandora.Paradigm.Controlflow.Effect.Interpreted ((!), (=||)) import Pandora.Paradigm.Primary.Algebraic ((<-*-), extract) import Pandora.Paradigm.Primary.Algebraic.Product ((:*:) ((:*:))) import Pandora.Paradigm.Primary.Algebraic.Exponential (type (<--), type (-->), (%)) import Pandora.Paradigm.Primary.Functor.Identity (Identity (Identity)) import Pandora.Paradigm.Primary.Functor.Wye (Wye (Left, Right)) import Pandora.Pattern.Morphism.Flip (Flip (Flip)) import Pandora.Pattern.Morphism.Straight (Straight (Straight)) import Pandora.Paradigm.Schemes.T_U (T_U (T_U), type (<:.:>)) import Pandora.Paradigm.Schemes.P_Q_T (P_Q_T (P_Q_T)) import Pandora.Paradigm.Structure.Ability.Substructure (Substructure (Available, Substance, substructure), Segment (Root)) data Tap t a = Tap a (t a) instance Covariant (->) (->) t => Covariant (->) (->) (Tap t) where a -> b f <-|- :: (a -> b) -> Tap t a -> Tap t b <-|- Tap a x t a xs = b -> t b -> Tap t b forall (t :: * -> *) a. a -> t a -> Tap t a Tap (b -> t b -> Tap t b) -> b -> t b -> Tap t b forall (m :: * -> * -> *) a b. Category m => m (m a b) (m a b) # a -> b f a x (t b -> Tap t b) -> t b -> Tap t b forall (m :: * -> * -> *) a b. Category m => m (m a b) (m a b) # a -> b f (a -> b) -> t a -> t b forall (source :: * -> * -> *) (target :: * -> * -> *) (t :: * -> *) a b. Covariant source target t => source a b -> target (t a) (t b) <-|- t a xs instance Semimonoidal (-->) (:*:) (:*:) t => Semimonoidal (-->) (:*:) (:*:) (Tap t) where mult :: (Tap t a :*: Tap t b) --> Tap t (a :*: b) mult = ((Tap t a :*: Tap t b) -> Tap t (a :*: b)) -> (Tap t a :*: Tap t b) --> Tap t (a :*: b) forall (v :: * -> * -> *) a e. v a e -> Straight v a e Straight (((Tap t a :*: Tap t b) -> Tap t (a :*: b)) -> (Tap t a :*: Tap t b) --> Tap t (a :*: b)) -> ((Tap t a :*: Tap t b) -> Tap t (a :*: b)) -> (Tap t a :*: Tap t b) --> Tap t (a :*: b) forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! \(Tap a x t a xs :*: Tap b y t b ys) -> (a :*: b) -> t (a :*: b) -> Tap t (a :*: b) forall (t :: * -> *) a. a -> t a -> Tap t a Tap ((a :*: b) -> t (a :*: b) -> Tap t (a :*: b)) -> (a :*: b) -> t (a :*: b) -> Tap t (a :*: b) forall (m :: * -> * -> *) a b. Category m => m (m a b) (m a b) # (a x a -> b -> a :*: b forall s a. s -> a -> s :*: a :*: b y) (t (a :*: b) -> Tap t (a :*: b)) -> t (a :*: b) -> Tap t (a :*: b) forall (m :: * -> * -> *) a b. Category m => m (m a b) (m a b) # (forall k (p :: * -> * -> *) (source :: * -> * -> *) (target :: k -> k -> k) (t :: k -> *) (a :: k) (b :: k). Semimonoidal p source target t => p (source (t a) (t b)) (t (target a b)) forall (source :: * -> * -> *) (target :: * -> * -> *) (t :: * -> *) a b. Semimonoidal (-->) source target t => source (t a) (t b) --> t (target a b) mult @(-->) ((t a :*: t b) --> t (a :*: b)) -> (t a :*: t b) -> t (a :*: b) forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! (t a xs t a -> t b -> t a :*: t b forall s a. s -> a -> s :*: a :*: t b ys)) instance Semimonoidal (<--) (:*:) (:*:) t => Semimonoidal (<--) (:*:) (:*:) (Tap t) where mult :: (Tap t a :*: Tap t b) <-- Tap t (a :*: b) mult = (Tap t (a :*: b) -> Tap t a :*: Tap t b) -> (Tap t a :*: Tap t b) <-- Tap t (a :*: b) forall (v :: * -> * -> *) a e. v e a -> Flip v a e Flip ((Tap t (a :*: b) -> Tap t a :*: Tap t b) -> (Tap t a :*: Tap t b) <-- Tap t (a :*: b)) -> (Tap t (a :*: b) -> Tap t a :*: Tap t b) -> (Tap t a :*: Tap t b) <-- Tap t (a :*: b) forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! \(Tap (a x :*: b y) t (a :*: b) xys) -> ((Flip (:*:) (Tap t b) (t a) -> Flip (:*:) (Tap t b) (Tap t a)) -> Primary (Flip (:*:) (Tap t b)) (t a) -> Primary (Flip (:*:) (Tap t b)) (Tap t a) forall (m :: * -> * -> *) (t :: * -> *) (u :: * -> *) a b. (Interpreted m t, Semigroupoid m, Interpreted m u) => m (t a) (u b) -> m (Primary t a) (Primary u b) (=||) @(->) @(Flip _ _) ((t a -> Tap t a) -> Flip (:*:) (Tap t b) (t a) -> Flip (:*:) (Tap t b) (Tap t a) forall (source :: * -> * -> *) (target :: * -> * -> *) (t :: * -> *) a b. Covariant source target t => source a b -> target (t a) (t b) (<-|-) (a -> t a -> Tap t a forall (t :: * -> *) a. a -> t a -> Tap t a Tap a x)) ((t a :*: Tap t b) -> Tap t a :*: Tap t b) -> ((t a :*: t b) -> t a :*: Tap t b) -> (t a :*: t b) -> Tap t a :*: Tap t b forall (m :: * -> * -> *) b c a. Semigroupoid m => m b c -> m a b -> m a c . ((t b -> Tap t b) -> (t a :*: t b) -> t a :*: Tap t b forall (source :: * -> * -> *) (target :: * -> * -> *) (t :: * -> *) a b. Covariant source target t => source a b -> target (t a) (t b) (<-|-) (b -> t b -> Tap t b forall (t :: * -> *) a. a -> t a -> Tap t a Tap b y))) (forall k (p :: * -> * -> *) (source :: * -> * -> *) (target :: k -> k -> k) (t :: k -> *) (a :: k) (b :: k). Semimonoidal p source target t => p (source (t a) (t b)) (t (target a b)) forall (source :: * -> * -> *) (target :: * -> * -> *) (t :: * -> *) a b. Semimonoidal (<--) source target t => source (t a) (t b) <-- t (target a b) mult @(<--) ((t a :*: t b) <-- t (a :*: b)) -> t (a :*: b) -> t a :*: t b forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! t (a :*: b) xys) instance Semimonoidal (<--) (:*:) (:*:) t => Monoidal (<--) (-->) (:*:) (:*:) (Tap t) where unit :: Proxy (:*:) -> (Unit (:*:) --> a) <-- Tap t a unit Proxy (:*:) _ = (Tap t a -> One --> a) -> Flip (->) (One --> a) (Tap t a) forall (v :: * -> * -> *) a e. v e a -> Flip v a e Flip ((Tap t a -> One --> a) -> Flip (->) (One --> a) (Tap t a)) -> (Tap t a -> One --> a) -> Flip (->) (One --> a) (Tap t a) forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! \(Tap a x t a _) -> (One -> a) -> One --> a forall (v :: * -> * -> *) a e. v a e -> Straight v a e Straight (\One _ -> a x) instance Traversable (->) (->) t => Traversable (->) (->) (Tap t) where a -> u b f <<- :: (a -> u b) -> Tap t a -> u (Tap t b) <<- Tap a x t a xs = b -> t b -> Tap t b forall (t :: * -> *) a. a -> t a -> Tap t a Tap (b -> t b -> Tap t b) -> u b -> u (t b -> Tap t b) forall (source :: * -> * -> *) (target :: * -> * -> *) (t :: * -> *) a b. Covariant source target t => source a b -> target (t a) (t b) <-|- a -> u b f a x u (t b -> Tap t b) -> u (t b) -> u (Tap t b) forall (t :: * -> *) a b. (Covariant (->) (->) t, Semimonoidal (-->) (:*:) (:*:) t) => t (a -> b) -> t a -> t b <-*- a -> u b f (a -> u b) -> t a -> u (t b) forall (source :: * -> * -> *) (target :: * -> * -> *) (t :: * -> *) (u :: * -> *) a b. (Traversable source target t, Covariant source target u, Monoidal (Straight source) (Straight target) (:*:) (:*:) u) => source a (u b) -> target (t a) (u (t b)) <<- t a xs instance (Semimonoidal (<--) (:*:) (:*:) t, Extendable (->) t, Covariant (->) (->) t) => Extendable (->) (Tap t) where Tap t a -> b f <<= :: (Tap t a -> b) -> Tap t a -> Tap t b <<= Tap t a x = b -> t b -> Tap t b forall (t :: * -> *) a. a -> t a -> Tap t a Tap (b -> t b -> Tap t b) -> b -> t b -> Tap t b forall (m :: * -> * -> *) a b. Category m => m (m a b) (m a b) # Tap t a -> b f Tap t a x (t b -> Tap t b) -> t b -> Tap t b forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! Tap t a -> b f (Tap t a -> b) -> (t a -> Tap t a) -> t a -> b forall (m :: * -> * -> *) b c a. Semigroupoid m => m b c -> m a b -> m a c . a -> t a -> Tap t a forall (t :: * -> *) a. a -> t a -> Tap t a Tap (Tap t a -> a forall (t :: * -> *) a. Extractable t => t a -> a extract Tap t a x) (t a -> b) -> t a -> t b forall (source :: * -> * -> *) (t :: * -> *) a b. Extendable source t => source (t a) b -> source (t a) (t b) <<= Tap t a -> t a forall (cat :: * -> * -> *) (t :: (* -> *) -> * -> *) (u :: * -> *) a. (Lowerable cat t, Covariant cat cat u) => cat (t u a) (u a) lower Tap t a x instance Lowerable (->) Tap where lower :: Tap u a -> u a lower (Tap a _ u a xs) = u a xs instance Hoistable (->) Tap where forall a. u a -> v a f /|\ :: (forall a. u a -> v a) -> forall a. Tap u a -> Tap v a /|\ Tap a x u a xs = a -> v a -> Tap v a forall (t :: * -> *) a. a -> t a -> Tap t a Tap a x (v a -> Tap v a) -> v a -> Tap v a forall (m :: * -> * -> *) a b. Category m => m (m a b) (m a b) # u a -> v a forall a. u a -> v a f u a xs instance {-# OVERLAPS #-} Semimonoidal (-->) (:*:) (:*:) t => Semimonoidal (-->) (:*:) (:*:) (Tap (t <:.:> t := (:*:))) where mult :: (Tap ((t <:.:> t) := (:*:)) a :*: Tap ((t <:.:> t) := (:*:)) b) --> Tap ((t <:.:> t) := (:*:)) (a :*: b) mult = ((Tap ((t <:.:> t) := (:*:)) a :*: Tap ((t <:.:> t) := (:*:)) b) -> Tap ((t <:.:> t) := (:*:)) (a :*: b)) -> (Tap ((t <:.:> t) := (:*:)) a :*: Tap ((t <:.:> t) := (:*:)) b) --> Tap ((t <:.:> t) := (:*:)) (a :*: b) forall (v :: * -> * -> *) a e. v a e -> Straight v a e Straight (((Tap ((t <:.:> t) := (:*:)) a :*: Tap ((t <:.:> t) := (:*:)) b) -> Tap ((t <:.:> t) := (:*:)) (a :*: b)) -> (Tap ((t <:.:> t) := (:*:)) a :*: Tap ((t <:.:> t) := (:*:)) b) --> Tap ((t <:.:> t) := (:*:)) (a :*: b)) -> ((Tap ((t <:.:> t) := (:*:)) a :*: Tap ((t <:.:> t) := (:*:)) b) -> Tap ((t <:.:> t) := (:*:)) (a :*: b)) -> (Tap ((t <:.:> t) := (:*:)) a :*: Tap ((t <:.:> t) := (:*:)) b) --> Tap ((t <:.:> t) := (:*:)) (a :*: b) forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! \(Tap a x (T_U (t a xls :*: t a xrs)) :*: Tap b y (T_U (t b yls :*: t b yrs))) -> (a :*: b) -> T_U Covariant Covariant (:*:) t t (a :*: b) -> Tap ((t <:.:> t) := (:*:)) (a :*: b) forall (t :: * -> *) a. a -> t a -> Tap t a Tap (a x a -> b -> a :*: b forall s a. s -> a -> s :*: a :*: b y) (T_U Covariant Covariant (:*:) t t (a :*: b) -> Tap ((t <:.:> t) := (:*:)) (a :*: b)) -> ((t (a :*: b) :*: t (a :*: b)) -> T_U Covariant Covariant (:*:) t t (a :*: b)) -> (t (a :*: b) :*: t (a :*: b)) -> Tap ((t <:.:> t) := (:*:)) (a :*: b) forall (m :: * -> * -> *) b c a. Semigroupoid m => m b c -> m a b -> m a c . (t (a :*: b) :*: t (a :*: b)) -> T_U Covariant Covariant (:*:) t t (a :*: b) forall k k k k k (ct :: k) (cu :: k) (p :: k -> k -> *) (t :: k -> k) (u :: k -> k) (a :: k). p (t a) (u a) -> T_U ct cu p t u a T_U ((t (a :*: b) :*: t (a :*: b)) -> Tap ((t <:.:> t) := (:*:)) (a :*: b)) -> (t (a :*: b) :*: t (a :*: b)) -> Tap ((t <:.:> t) := (:*:)) (a :*: b) forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! (forall k (p :: * -> * -> *) (source :: * -> * -> *) (target :: k -> k -> k) (t :: k -> *) (a :: k) (b :: k). Semimonoidal p source target t => p (source (t a) (t b)) (t (target a b)) forall (source :: * -> * -> *) (target :: * -> * -> *) (t :: * -> *) a b. Semimonoidal (-->) source target t => source (t a) (t b) --> t (target a b) mult @(-->) ((t a :*: t b) --> t (a :*: b)) -> (t a :*: t b) -> t (a :*: b) forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! t a xls t a -> t b -> t a :*: t b forall s a. s -> a -> s :*: a :*: t b yls) t (a :*: b) -> t (a :*: b) -> t (a :*: b) :*: t (a :*: b) forall s a. s -> a -> s :*: a :*: (forall k (p :: * -> * -> *) (source :: * -> * -> *) (target :: k -> k -> k) (t :: k -> *) (a :: k) (b :: k). Semimonoidal p source target t => p (source (t a) (t b)) (t (target a b)) forall (source :: * -> * -> *) (target :: * -> * -> *) (t :: * -> *) a b. Semimonoidal (-->) source target t => source (t a) (t b) --> t (target a b) mult @(-->) ((t a :*: t b) --> t (a :*: b)) -> (t a :*: t b) -> t (a :*: b) forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! t a xrs t a -> t b -> t a :*: t b forall s a. s -> a -> s :*: a :*: t b yrs) instance (Covariant (->) (->) t) => Substructure Root (Tap (t <:.:> t := (:*:))) where type Available Root (Tap (t <:.:> t := (:*:))) = Identity type Substance Root (Tap (t <:.:> t := (:*:))) = Identity substructure :: Lens (Available 'Root (Tap ((t <:.:> t) := (:*:)))) ((<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a) (Substance 'Root (Tap ((t <:.:> t) := (:*:))) a) substructure = ((<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a -> Store (Identity (Identity a)) ((<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a)) -> P_Q_T (->) Store Identity ((<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a) (Identity a) forall (p :: * -> * -> *) (q :: * -> * -> *) (t :: * -> *) a b. p a (q (t b) a) -> P_Q_T p q t a b P_Q_T (((<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a -> Store (Identity (Identity a)) ((<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a)) -> P_Q_T (->) Store Identity ((<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a) (Identity a)) -> ((<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a -> Store (Identity (Identity a)) ((<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a)) -> P_Q_T (->) Store Identity ((<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a) (Identity a) forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! \(<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a zipper -> case (<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a -> Tap ((t <:.:> t) := (:*:)) a forall (cat :: * -> * -> *) (t :: (* -> *) -> * -> *) (u :: * -> *) a. (Lowerable cat t, Covariant cat cat u) => cat (t u a) (u a) lower (<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a zipper of Tap a x (:=) (t <:.:> t) (:*:) a xs -> (((:*:) (Identity (Identity a)) :. (->) (Identity (Identity a))) := (<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a) -> Store (Identity (Identity a)) ((<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a) forall s a. (((:*:) s :. (->) s) := a) -> Store s a Store ((((:*:) (Identity (Identity a)) :. (->) (Identity (Identity a))) := (<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a) -> Store (Identity (Identity a)) ((<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a)) -> (((:*:) (Identity (Identity a)) :. (->) (Identity (Identity a))) := (<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a) -> Store (Identity (Identity a)) ((<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a) forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! Identity a -> Identity (Identity a) forall a. a -> Identity a Identity (a -> Identity a forall a. a -> Identity a Identity a x) Identity (Identity a) -> (Identity (Identity a) -> (<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a) -> ((:*:) (Identity (Identity a)) :. (->) (Identity (Identity a))) := (<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a forall s a. s -> a -> s :*: a :*: Tap ((t <:.:> t) := (:*:)) a -> (<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a forall (cat :: * -> * -> *) (t :: (* -> *) -> * -> *) (u :: * -> *) a. (Liftable cat t, Covariant cat cat u) => cat (u a) (t u a) lift (Tap ((t <:.:> t) := (:*:)) a -> (<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a) -> (Identity (Identity a) -> Tap ((t <:.:> t) := (:*:)) a) -> Identity (Identity a) -> (<:.>) (Tagged 'Root) (Tap ((t <:.:> t) := (:*:))) a forall (m :: * -> * -> *) b c a. Semigroupoid m => m b c -> m a b -> m a c . (a -> (:=) (t <:.:> t) (:*:) a -> Tap ((t <:.:> t) := (:*:)) a forall (t :: * -> *) a. a -> t a -> Tap t a Tap (a -> (:=) (t <:.:> t) (:*:) a -> Tap ((t <:.:> t) := (:*:)) a) -> (:=) (t <:.:> t) (:*:) a -> a -> Tap ((t <:.:> t) := (:*:)) a forall a b c. (a -> b -> c) -> b -> a -> c % (:=) (t <:.:> t) (:*:) a xs) (a -> Tap ((t <:.:> t) := (:*:)) a) -> (Identity (Identity a) -> a) -> Identity (Identity a) -> Tap ((t <:.:> t) := (:*:)) a forall (m :: * -> * -> *) b c a. Semigroupoid m => m b c -> m a b -> m a c . Identity a -> a forall (t :: * -> *) a. Extractable t => t a -> a extract (Identity a -> a) -> (Identity (Identity a) -> Identity a) -> Identity (Identity a) -> a forall (m :: * -> * -> *) b c a. Semigroupoid m => m b c -> m a b -> m a c . Identity (Identity a) -> Identity a forall (t :: * -> *) a. Extractable t => t a -> a extract instance (Covariant (->) (->) t) => Substructure Left (Tap (t <:.:> t := (:*:))) where type Available Left (Tap (t <:.:> t := (:*:))) = Identity type Substance Left (Tap (t <:.:> t := (:*:))) = t substructure :: Lens (Available 'Left (Tap ((t <:.:> t) := (:*:)))) ((<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a) (Substance 'Left (Tap ((t <:.:> t) := (:*:))) a) substructure = ((<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a -> Store (Identity (t a)) ((<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a)) -> P_Q_T (->) Store Identity ((<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a) (t a) forall (p :: * -> * -> *) (q :: * -> * -> *) (t :: * -> *) a b. p a (q (t b) a) -> P_Q_T p q t a b P_Q_T (((<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a -> Store (Identity (t a)) ((<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a)) -> P_Q_T (->) Store Identity ((<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a) (t a)) -> ((<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a -> Store (Identity (t a)) ((<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a)) -> P_Q_T (->) Store Identity ((<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a) (t a) forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! \(<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a zipper -> case (<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a -> Tap ((t <:.:> t) := (:*:)) a forall (cat :: * -> * -> *) (t :: (* -> *) -> * -> *) (u :: * -> *) a. (Lowerable cat t, Covariant cat cat u) => cat (t u a) (u a) lower (<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a zipper of Tap a x (T_U (t a future :*: t a past)) -> (((:*:) (Identity (t a)) :. (->) (Identity (t a))) := (<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a) -> Store (Identity (t a)) ((<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a) forall s a. (((:*:) s :. (->) s) := a) -> Store s a Store ((((:*:) (Identity (t a)) :. (->) (Identity (t a))) := (<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a) -> Store (Identity (t a)) ((<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a)) -> (((:*:) (Identity (t a)) :. (->) (Identity (t a))) := (<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a) -> Store (Identity (t a)) ((<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a) forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! t a -> Identity (t a) forall a. a -> Identity a Identity t a future Identity (t a) -> (Identity (t a) -> (<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a) -> ((:*:) (Identity (t a)) :. (->) (Identity (t a))) := (<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a forall s a. s -> a -> s :*: a :*: Tap ((t <:.:> t) := (:*:)) a -> (<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a forall (cat :: * -> * -> *) (t :: (* -> *) -> * -> *) (u :: * -> *) a. (Liftable cat t, Covariant cat cat u) => cat (u a) (t u a) lift (Tap ((t <:.:> t) := (:*:)) a -> (<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a) -> (Identity (t a) -> Tap ((t <:.:> t) := (:*:)) a) -> Identity (t a) -> (<:.>) (Tagged 'Left) (Tap ((t <:.:> t) := (:*:))) a forall (m :: * -> * -> *) b c a. Semigroupoid m => m b c -> m a b -> m a c . a -> T_U Covariant Covariant (:*:) t t a -> Tap ((t <:.:> t) := (:*:)) a forall (t :: * -> *) a. a -> t a -> Tap t a Tap a x (T_U Covariant Covariant (:*:) t t a -> Tap ((t <:.:> t) := (:*:)) a) -> (Identity (t a) -> T_U Covariant Covariant (:*:) t t a) -> Identity (t a) -> Tap ((t <:.:> t) := (:*:)) a forall (m :: * -> * -> *) b c a. Semigroupoid m => m b c -> m a b -> m a c . (t a :*: t a) -> T_U Covariant Covariant (:*:) t t a forall k k k k k (ct :: k) (cu :: k) (p :: k -> k -> *) (t :: k -> k) (u :: k -> k) (a :: k). p (t a) (u a) -> T_U ct cu p t u a T_U ((t a :*: t a) -> T_U Covariant Covariant (:*:) t t a) -> (Identity (t a) -> t a :*: t a) -> Identity (t a) -> T_U Covariant Covariant (:*:) t t a forall (m :: * -> * -> *) b c a. Semigroupoid m => m b c -> m a b -> m a c . (t a -> t a -> t a :*: t a forall s a. s -> a -> s :*: a :*: t a past) (t a -> t a :*: t a) -> (Identity (t a) -> t a) -> Identity (t a) -> t a :*: t a forall (m :: * -> * -> *) b c a. Semigroupoid m => m b c -> m a b -> m a c . Identity (t a) -> t a forall (t :: * -> *) a. Extractable t => t a -> a extract instance (Covariant (->) (->) t) => Substructure Right (Tap (t <:.:> t := (:*:))) where type Available Right (Tap (t <:.:> t := (:*:))) = Identity type Substance Right (Tap (t <:.:> t := (:*:))) = t substructure :: Lens (Available 'Right (Tap ((t <:.:> t) := (:*:)))) ((<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a) (Substance 'Right (Tap ((t <:.:> t) := (:*:))) a) substructure = ((<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a -> Store (Identity (t a)) ((<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a)) -> P_Q_T (->) Store Identity ((<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a) (t a) forall (p :: * -> * -> *) (q :: * -> * -> *) (t :: * -> *) a b. p a (q (t b) a) -> P_Q_T p q t a b P_Q_T (((<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a -> Store (Identity (t a)) ((<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a)) -> P_Q_T (->) Store Identity ((<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a) (t a)) -> ((<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a -> Store (Identity (t a)) ((<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a)) -> P_Q_T (->) Store Identity ((<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a) (t a) forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! \(<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a zipper -> case (<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a -> Tap ((t <:.:> t) := (:*:)) a forall (cat :: * -> * -> *) (t :: (* -> *) -> * -> *) (u :: * -> *) a. (Lowerable cat t, Covariant cat cat u) => cat (t u a) (u a) lower (<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a zipper of Tap a x (T_U (t a future :*: t a past)) -> (((:*:) (Identity (t a)) :. (->) (Identity (t a))) := (<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a) -> Store (Identity (t a)) ((<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a) forall s a. (((:*:) s :. (->) s) := a) -> Store s a Store ((((:*:) (Identity (t a)) :. (->) (Identity (t a))) := (<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a) -> Store (Identity (t a)) ((<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a)) -> (((:*:) (Identity (t a)) :. (->) (Identity (t a))) := (<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a) -> Store (Identity (t a)) ((<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a) forall (m :: * -> * -> *) (t :: * -> *) a. Interpreted m t => m (t a) (Primary t a) ! t a -> Identity (t a) forall a. a -> Identity a Identity t a past Identity (t a) -> (Identity (t a) -> (<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a) -> ((:*:) (Identity (t a)) :. (->) (Identity (t a))) := (<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a forall s a. s -> a -> s :*: a :*: Tap ((t <:.:> t) := (:*:)) a -> (<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a forall (cat :: * -> * -> *) (t :: (* -> *) -> * -> *) (u :: * -> *) a. (Liftable cat t, Covariant cat cat u) => cat (u a) (t u a) lift (Tap ((t <:.:> t) := (:*:)) a -> (<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a) -> (Identity (t a) -> Tap ((t <:.:> t) := (:*:)) a) -> Identity (t a) -> (<:.>) (Tagged 'Right) (Tap ((t <:.:> t) := (:*:))) a forall (m :: * -> * -> *) b c a. Semigroupoid m => m b c -> m a b -> m a c . a -> T_U Covariant Covariant (:*:) t t a -> Tap ((t <:.:> t) := (:*:)) a forall (t :: * -> *) a. a -> t a -> Tap t a Tap a x (T_U Covariant Covariant (:*:) t t a -> Tap ((t <:.:> t) := (:*:)) a) -> (Identity (t a) -> T_U Covariant Covariant (:*:) t t a) -> Identity (t a) -> Tap ((t <:.:> t) := (:*:)) a forall (m :: * -> * -> *) b c a. Semigroupoid m => m b c -> m a b -> m a c . (t a :*: t a) -> T_U Covariant Covariant (:*:) t t a forall k k k k k (ct :: k) (cu :: k) (p :: k -> k -> *) (t :: k -> k) (u :: k -> k) (a :: k). p (t a) (u a) -> T_U ct cu p t u a T_U ((t a :*: t a) -> T_U Covariant Covariant (:*:) t t a) -> (Identity (t a) -> t a :*: t a) -> Identity (t a) -> T_U Covariant Covariant (:*:) t t a forall (m :: * -> * -> *) b c a. Semigroupoid m => m b c -> m a b -> m a c . (t a future t a -> t a -> t a :*: t a forall s a. s -> a -> s :*: a :*:) (t a -> t a :*: t a) -> (Identity (t a) -> t a) -> Identity (t a) -> t a :*: t a forall (m :: * -> * -> *) b c a. Semigroupoid m => m b c -> m a b -> m a c . Identity (t a) -> t a forall (t :: * -> *) a. Extractable t => t a -> a extract