module Pandora.Pattern.Category (Category (..)) where
import Pandora.Pattern.Semigroupoid (Semigroupoid ((.)))
infixl 1 <---------
infixl 2 <--------
infixl 3 <-------
infixl 4 <------
infixl 5 <-----
infixl 6 <----
infixl 7 <---
infixl 8 <--
infixr 1 --------->
infixr 2 -------->
infixr 3 ------->
infixr 4 ------>
infixr 5 ----->
infixr 6 ---->
infixr 7 --->
infixr 8 -->
class Semigroupoid m => Category m where
identity :: m a a
(<---------), (<--------), (<-------), (<------), (<-----), (<----), (<---), (<--) :: m (m a b) (m a b)
(<---------) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(<--------) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(<-------) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(<------) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(<-----) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(<----) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(<---) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(<--) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(--------->), (-------->), (------->), (------>), (----->), (---->), (--->), (-->) :: m (m a b) (m a b)
(--------->) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(-------->) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(------->) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(------>) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(----->) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(---->) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(--->) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity
(-->) = m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity m (m a b) (m a b) -> m (m a b) (m a b) -> m (m a b) (m a b)
forall (m :: * -> * -> *) b c a.
Semigroupoid m =>
m b c -> m a b -> m a c
. m (m a b) (m a b)
forall (m :: * -> * -> *) a. Category m => m a a
identity