Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Pandora.Pattern.Morphism.Flip
Documentation
newtype Flip (v :: * -> * -> *) a e Source #
Constructors
Flip (v e a) |
Instances
Monoidal (-->) (<--) (:*:) (:*:) Predicate Source # | |
Monoidal (<--) (-->) (:*:) (:*:) Exactly Source # | |
Monoid r => Monoidal (-->) (<--) (:*:) (:*:) (Convergence r) Source # | |
Monoidal (<--) (-->) (:*:) (:*:) ((:*:) s) Source # | |
Semimonoidal (<--) (:*:) (:*:) t => Monoidal (<--) (-->) (:*:) (:*:) (Tap t) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (<--) (:*:) (:*:) t) => Monoidal (<--) (-->) (:*:) (:*:) (Construction t) Source # | |
Monoidal (<--) (-->) (:*:) (:*:) (Store s) Source # | |
Monoidal (-->) (-->) (:*:) (:*:) (Flip Conclusion a) Source # | |
Monoidal (<--) (-->) (:*:) (:*:) (Flip (:*:) a) Source # | |
Monoidal (<--) (-->) (:*:) (:*:) (Tagged tag) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Monoidal (<--) (-->) (:*:) (:*:) t) => Monoidal (<--) (-->) (:*:) (:*:) (Backwards t) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Monoidal (<--) (-->) (:*:) (:*:) t) => Monoidal (<--) (-->) (:*:) (:*:) (Reverse t) Source # | |
Semimonoidal (<--) (:*:) (:*:) t => Monoidal (<--) (-->) (:*:) (:*:) (Exactly <:*:> t) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) t', Monoidal (<--) (-->) (:*:) (:*:) u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t t') => Monoidal (<--) (-->) (:*:) (:*:) ((t <:<.>:> t') >>>>>>>> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Monoidal (<--) (-->) (:*:) (:*:) t, Monoidal (<--) (-->) (:*:) (:*:) u) => Monoidal (<--) (-->) (:*:) (:*:) (t <.:> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Monoidal (<--) (-->) (:*:) (:*:) t, Monoidal (<--) (-->) (:*:) (:*:) u) => Monoidal (<--) (-->) (:*:) (:*:) (t <:.> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Monoidal (<--) (-->) (:*:) (:*:) t, Monoidal (<--) (-->) (:*:) (:*:) t') => Monoidal (<--) (-->) (:*:) (:*:) (t <::> t') Source # | |
(Category m, Covariant m m t) => Contravariant m (Flip m) t Source # | |
Defined in Pandora.Pattern.Morphism.Flip Methods (>-|-) :: m a b -> Flip m (t b) (t a) Source # (>-|--) :: m a b -> Flip m (t b) (t a) Source # (>-|---) :: m a b -> Flip m (t b) (t a) Source # (>-|----) :: m a b -> Flip m (t b) (t a) Source # (>-|-----) :: m a b -> Flip m (t b) (t a) Source # (>-|------) :: m a b -> Flip m (t b) (t a) Source # (>-|-------) :: m a b -> Flip m (t b) (t a) Source # (>-|--------) :: m a b -> Flip m (t b) (t a) Source # (>-|-|-) :: (Contravariant m (Betwixt m (Flip m)) u, Contravariant (Betwixt m (Flip m)) (Flip m) t) => m a b -> Flip m (t (u a)) (t (u b)) Source # | |
Semigroupoid m => Semigroupoid (Flip m) Source # | |
Category m => Category (Flip m) Source # | |
Defined in Pandora.Pattern.Morphism.Flip Methods identity :: Flip m a a Source # (<--------) :: Flip m (Flip m a b) (Flip m a b) Source # (<-------) :: Flip m (Flip m a b) (Flip m a b) Source # (<------) :: Flip m (Flip m a b) (Flip m a b) Source # (<-----) :: Flip m (Flip m a b) (Flip m a b) Source # (<----) :: Flip m (Flip m a b) (Flip m a b) Source # (<---) :: Flip m (Flip m a b) (Flip m a b) Source # (<--) :: Flip m (Flip m a b) (Flip m a b) Source # (-------->) :: Flip m (Flip m a b) (Flip m a b) Source # (------->) :: Flip m (Flip m a b) (Flip m a b) Source # (------>) :: Flip m (Flip m a b) (Flip m a b) Source # (----->) :: Flip m (Flip m a b) (Flip m a b) Source # (---->) :: Flip m (Flip m a b) (Flip m a b) Source # | |
(Category m, Covariant m m t) => Contravariant (Flip m) m t Source # | |
Defined in Pandora.Pattern.Morphism.Flip Methods (>-|-) :: Flip m a b -> m (t b) (t a) Source # (>-|--) :: Flip m a b -> m (t b) (t a) Source # (>-|---) :: Flip m a b -> m (t b) (t a) Source # (>-|----) :: Flip m a b -> m (t b) (t a) Source # (>-|-----) :: Flip m a b -> m (t b) (t a) Source # (>-|------) :: Flip m a b -> m (t b) (t a) Source # (>-|-------) :: Flip m a b -> m (t b) (t a) Source # (>-|--------) :: Flip m a b -> m (t b) (t a) Source # (>-|-|-) :: (Contravariant (Flip m) (Betwixt (Flip m) m) u, Contravariant (Betwixt (Flip m) m) m t) => Flip m a b -> m (t (u a)) (t (u b)) Source # | |
Semimonoidal (<--) (:*:) (:*:) Exactly Source # | |
Semimonoidal (<--) (:*:) (:*:) Maybe Source # | |
Semimonoidal (<--) (:*:) (:*:) ((:*:) s :: Type -> Type) Source # | |
Semimonoidal (<--) (:*:) (:*:) t => Semimonoidal (<--) (:*:) (:*:) (Tap t :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (<--) (:*:) (:*:) t) => Semimonoidal (<--) (:*:) (:*:) (Construction t :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Construction Methods mult :: forall (a :: k) (b :: k). (Construction t a :*: Construction t b) <-- Construction t (a :*: b) Source # | |
Semimonoidal (<--) (:*:) (:*:) (Store s :: Type -> Type) Source # | |
Semimonoidal (-->) (:*:) (:*:) (Flip Conclusion a :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion Methods mult :: forall (a0 :: k) (b :: k). (Flip Conclusion a a0 :*: Flip Conclusion a b) --> Flip Conclusion a (a0 :*: b) Source # | |
Semimonoidal (<--) (:*:) (:*:) (Flip (:*:) a :: Type -> Type) Source # | |
Semimonoidal (<--) (:*:) (:*:) (Tagged tag :: Type -> Type) Source # | |
(Semimonoidal (<--) (:*:) (:*:) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t) => Semimonoidal (<--) (:*:) (:*:) (Backwards t :: Type -> Type) Source # | |
(Semimonoidal (<--) (:*:) (:*:) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t) => Semimonoidal (<--) (:*:) (:*:) (Reverse t :: Type -> Type) Source # | |
Semimonoidal (<--) (:*:) (:*:) ((->) e :: Type -> Type) Source # | |
(Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) u) => Semimonoidal (<--) (:*:) (:*:) (t <:*:> u :: Type -> Type) Source # | |
Semimonoidal (<--) (:*:) (:*:) t => Semimonoidal (<--) (:*:) (:*:) (Exactly <:*:> t :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (<--) (:*:) (:*:) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (<--) (:*:) (:*:) u, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t', Semimonoidal (<--) (:*:) (:*:) t') => Semimonoidal (<--) (:*:) (:*:) ((t <:<.>:> t') >>>>>>>> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) u) => Semimonoidal (<--) (:*:) (:*:) (t <.:> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) u) => Semimonoidal (<--) (:*:) (:*:) (t <:.> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) t') => Semimonoidal (<--) (:*:) (:*:) (t <::> t' :: Type -> Type) Source # | |
(Category m, Covariant m m t) => Covariant (Flip m) (Flip m) t Source # | |
Defined in Pandora.Pattern.Morphism.Flip Methods (<-|-) :: Flip m a b -> Flip m (t a) (t b) Source # (<-|--) :: Flip m a b -> Flip m (t a) (t b) Source # (<-|---) :: Flip m a b -> Flip m (t a) (t b) Source # (<-|----) :: Flip m a b -> Flip m (t a) (t b) Source # (<-|-----) :: Flip m a b -> Flip m (t a) (t b) Source # (<-|------) :: Flip m a b -> Flip m (t a) (t b) Source # (<-|-------) :: Flip m a b -> Flip m (t a) (t b) Source # (<-|--------) :: Flip m a b -> Flip m (t a) (t b) Source # (<-|-|-) :: (Covariant (Flip m) (Betwixt (Flip m) (Flip m)) u, Covariant (Betwixt (Flip m) (Flip m)) (Flip m) t) => Flip m a b -> Flip m (t (u a)) (t (u b)) Source # (<-|-|--) :: (Covariant (Flip m) (Betwixt (Flip m) (Flip m)) u, Covariant (Betwixt (Flip m) (Flip m)) (Flip m) t) => Flip m a b -> Flip m (t (u a)) (t (u b)) Source # (<-|-|---) :: (Covariant (Flip m) (Betwixt (Flip m) (Flip m)) u, Covariant (Betwixt (Flip m) (Flip m)) (Flip m) t) => Flip m a b -> Flip m (t (u a)) (t (u b)) Source # (<-|-|----) :: (Covariant (Flip m) (Betwixt (Flip m) (Flip m)) u, Covariant (Betwixt (Flip m) (Flip m)) (Flip m) t) => Flip m a b -> Flip m (t (u a)) (t (u b)) Source # (<-|-|-----) :: (Covariant (Flip m) (Betwixt (Flip m) (Flip m)) u, Covariant (Betwixt (Flip m) (Flip m)) (Flip m) t) => Flip m a b -> Flip m (t (u a)) (t (u b)) Source # (<-|-|------) :: (Covariant (Flip m) (Betwixt (Flip m) (Flip m)) u, Covariant (Betwixt (Flip m) (Flip m)) (Flip m) t) => Flip m a b -> Flip m (t (u a)) (t (u b)) Source # (<-|-|-------) :: (Covariant (Flip m) (Betwixt (Flip m) (Flip m)) u, Covariant (Betwixt (Flip m) (Flip m)) (Flip m) t) => Flip m a b -> Flip m (t (u a)) (t (u b)) Source # (<-|-|-|-) :: (Covariant (Flip m) (Betwixt (Flip m) (Betwixt (Flip m) (Flip m))) v, Covariant (Betwixt (Flip m) (Betwixt (Flip m) (Flip m))) (Betwixt (Betwixt (Flip m) (Flip m)) (Flip m)) u, Covariant (Betwixt (Betwixt (Flip m) (Flip m)) (Flip m)) (Flip m) t) => Flip m a b -> Flip m (t (u (v a))) (t (u (v b))) Source # | |
Morphable ('Into (Flip Conclusion e) :: Morph (Type -> Type)) Maybe Source # | |
Morphable ('Into ('Here Maybe :: Wedge (Type -> Type) a1) :: Morph (Wedge (Type -> Type) a1)) (Flip Wedge a2) Source # | |
Morphable ('Into ('That Maybe :: These (Type -> Type) a1) :: Morph (These (Type -> Type) a1)) (Flip These a2) Source # | |
Invariant (Flip Store r) Source # | |
Invariant (Flip (Lens available) tgt) Source # | |
Invariant (Flip State r) Source # | |
Substructure ('Left_ :: a1 -> Wye a1) (Flip (:*:) a2) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Flip v a) Source # | |
Defined in Pandora.Core.Interpreted Methods run :: ((->) < Flip v a a0) < Primary (Flip v a) a0 Source # unite :: ((->) < Primary (Flip v a) a0) < Flip v a a0 Source # (<~~~~~~~~) :: ((->) < Flip v a a0) < Primary (Flip v a) a0 Source # (<~~~~~~~) :: ((->) < Flip v a a0) < Primary (Flip v a) a0 Source # (<~~~~~~) :: ((->) < Flip v a a0) < Primary (Flip v a) a0 Source # (<~~~~~) :: ((->) < Flip v a a0) < Primary (Flip v a) a0 Source # (<~~~~) :: ((->) < Flip v a a0) < Primary (Flip v a) a0 Source # (<~~~) :: ((->) < Flip v a a0) < Primary (Flip v a) a0 Source # (<~~) :: ((->) < Flip v a a0) < Primary (Flip v a) a0 Source # (<~) :: ((->) < Flip v a a0) < Primary (Flip v a) a0 Source # (=#-) :: (Semigroupoid (->), Interpreted (->) u) => (((->) < Primary (Flip v a) a0) < Primary u b) -> ((->) < Flip v a a0) < u b Source # (-#=) :: (Semigroupoid (->), Interpreted (->) u) => (((->) < Flip v a a0) < u b) -> ((->) < Primary (Flip v a) a0) < Primary u b Source # (<$=#-) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (((->) < Primary (Flip v a) a0) < Primary u b) -> (j > Flip v a a0) -> (j > u b) Source # (-#=$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (((->) < Flip v a a0) < u b) -> (j > Primary (Flip v a) a0) -> (j > Primary u b) Source # | |
Contravariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ((<--) a) Source # | |
Defined in Pandora.Paradigm.Algebraic.Exponential Methods (>-|-) :: (a0 -> b) -> (a <-- b) -> (a <-- a0) Source # (>-|--) :: (a0 -> b) -> (a <-- b) -> (a <-- a0) Source # (>-|---) :: (a0 -> b) -> (a <-- b) -> (a <-- a0) Source # (>-|----) :: (a0 -> b) -> (a <-- b) -> (a <-- a0) Source # (>-|-----) :: (a0 -> b) -> (a <-- b) -> (a <-- a0) Source # (>-|------) :: (a0 -> b) -> (a <-- b) -> (a <-- a0) Source # (>-|-------) :: (a0 -> b) -> (a <-- b) -> (a <-- a0) Source # (>-|--------) :: (a0 -> b) -> (a <-- b) -> (a <-- a0) Source # (>-|-|-) :: (Contravariant (->) (Betwixt (->) (->)) u, Contravariant (Betwixt (->) (->)) (->) ((<--) a)) => (a0 -> b) -> (a <-- u a0) -> (a <-- u b) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip (Constant :: Type -> Type -> Type) b) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Constant Methods (<-|-) :: (a -> b0) -> Flip Constant b a -> Flip Constant b b0 Source # (<-|--) :: (a -> b0) -> Flip Constant b a -> Flip Constant b b0 Source # (<-|---) :: (a -> b0) -> Flip Constant b a -> Flip Constant b b0 Source # (<-|----) :: (a -> b0) -> Flip Constant b a -> Flip Constant b b0 Source # (<-|-----) :: (a -> b0) -> Flip Constant b a -> Flip Constant b b0 Source # (<-|------) :: (a -> b0) -> Flip Constant b a -> Flip Constant b b0 Source # (<-|-------) :: (a -> b0) -> Flip Constant b a -> Flip Constant b b0 Source # (<-|--------) :: (a -> b0) -> Flip Constant b a -> Flip Constant b b0 Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Constant b)) => (a -> b0) -> Flip Constant b (u a) -> Flip Constant b (u b0) Source # (<-|-|--) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Constant b)) => (a -> b0) -> Flip Constant b (u a) -> Flip Constant b (u b0) Source # (<-|-|---) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Constant b)) => (a -> b0) -> Flip Constant b (u a) -> Flip Constant b (u b0) Source # (<-|-|----) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Constant b)) => (a -> b0) -> Flip Constant b (u a) -> Flip Constant b (u b0) Source # (<-|-|-----) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Constant b)) => (a -> b0) -> Flip Constant b (u a) -> Flip Constant b (u b0) Source # (<-|-|------) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Constant b)) => (a -> b0) -> Flip Constant b (u a) -> Flip Constant b (u b0) Source # (<-|-|-------) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Constant b)) => (a -> b0) -> Flip Constant b (u a) -> Flip Constant b (u b0) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip Constant b)) => (a -> b0) -> Flip Constant b (u (v a)) -> Flip Constant b (u (v b0)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip (:+:) a) Source # | |
Defined in Pandora.Paradigm.Algebraic.Sum Methods (<-|-) :: (a0 -> b) -> Flip (:+:) a a0 -> Flip (:+:) a b Source # (<-|--) :: (a0 -> b) -> Flip (:+:) a a0 -> Flip (:+:) a b Source # (<-|---) :: (a0 -> b) -> Flip (:+:) a a0 -> Flip (:+:) a b Source # (<-|----) :: (a0 -> b) -> Flip (:+:) a a0 -> Flip (:+:) a b Source # (<-|-----) :: (a0 -> b) -> Flip (:+:) a a0 -> Flip (:+:) a b Source # (<-|------) :: (a0 -> b) -> Flip (:+:) a a0 -> Flip (:+:) a b Source # (<-|-------) :: (a0 -> b) -> Flip (:+:) a a0 -> Flip (:+:) a b Source # (<-|--------) :: (a0 -> b) -> Flip (:+:) a a0 -> Flip (:+:) a b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:+:) a)) => (a0 -> b) -> Flip (:+:) a (u a0) -> Flip (:+:) a (u b) Source # (<-|-|--) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:+:) a)) => (a0 -> b) -> Flip (:+:) a (u a0) -> Flip (:+:) a (u b) Source # (<-|-|---) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:+:) a)) => (a0 -> b) -> Flip (:+:) a (u a0) -> Flip (:+:) a (u b) Source # (<-|-|----) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:+:) a)) => (a0 -> b) -> Flip (:+:) a (u a0) -> Flip (:+:) a (u b) Source # (<-|-|-----) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:+:) a)) => (a0 -> b) -> Flip (:+:) a (u a0) -> Flip (:+:) a (u b) Source # (<-|-|------) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:+:) a)) => (a0 -> b) -> Flip (:+:) a (u a0) -> Flip (:+:) a (u b) Source # (<-|-|-------) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:+:) a)) => (a0 -> b) -> Flip (:+:) a (u a0) -> Flip (:+:) a (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip (:+:) a)) => (a0 -> b) -> Flip (:+:) a (u (v a0)) -> Flip (:+:) a (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip (:*:) a) Source # | |
Defined in Pandora.Paradigm.Algebraic.Product Methods (<-|-) :: (a0 -> b) -> Flip (:*:) a a0 -> Flip (:*:) a b Source # (<-|--) :: (a0 -> b) -> Flip (:*:) a a0 -> Flip (:*:) a b Source # (<-|---) :: (a0 -> b) -> Flip (:*:) a a0 -> Flip (:*:) a b Source # (<-|----) :: (a0 -> b) -> Flip (:*:) a a0 -> Flip (:*:) a b Source # (<-|-----) :: (a0 -> b) -> Flip (:*:) a a0 -> Flip (:*:) a b Source # (<-|------) :: (a0 -> b) -> Flip (:*:) a a0 -> Flip (:*:) a b Source # (<-|-------) :: (a0 -> b) -> Flip (:*:) a a0 -> Flip (:*:) a b Source # (<-|--------) :: (a0 -> b) -> Flip (:*:) a a0 -> Flip (:*:) a b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:*:) a)) => (a0 -> b) -> Flip (:*:) a (u a0) -> Flip (:*:) a (u b) Source # (<-|-|--) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:*:) a)) => (a0 -> b) -> Flip (:*:) a (u a0) -> Flip (:*:) a (u b) Source # (<-|-|---) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:*:) a)) => (a0 -> b) -> Flip (:*:) a (u a0) -> Flip (:*:) a (u b) Source # (<-|-|----) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:*:) a)) => (a0 -> b) -> Flip (:*:) a (u a0) -> Flip (:*:) a (u b) Source # (<-|-|-----) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:*:) a)) => (a0 -> b) -> Flip (:*:) a (u a0) -> Flip (:*:) a (u b) Source # (<-|-|------) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:*:) a)) => (a0 -> b) -> Flip (:*:) a (u a0) -> Flip (:*:) a (u b) Source # (<-|-|-------) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:*:) a)) => (a0 -> b) -> Flip (:*:) a (u a0) -> Flip (:*:) a (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip (:*:) a)) => (a0 -> b) -> Flip (:*:) a (u (v a0)) -> Flip (:*:) a (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip Validation a) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Validation Methods (<-|-) :: (a0 -> b) -> Flip Validation a a0 -> Flip Validation a b Source # (<-|--) :: (a0 -> b) -> Flip Validation a a0 -> Flip Validation a b Source # (<-|---) :: (a0 -> b) -> Flip Validation a a0 -> Flip Validation a b Source # (<-|----) :: (a0 -> b) -> Flip Validation a a0 -> Flip Validation a b Source # (<-|-----) :: (a0 -> b) -> Flip Validation a a0 -> Flip Validation a b Source # (<-|------) :: (a0 -> b) -> Flip Validation a a0 -> Flip Validation a b Source # (<-|-------) :: (a0 -> b) -> Flip Validation a a0 -> Flip Validation a b Source # (<-|--------) :: (a0 -> b) -> Flip Validation a a0 -> Flip Validation a b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Validation a)) => (a0 -> b) -> Flip Validation a (u a0) -> Flip Validation a (u b) Source # (<-|-|--) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Validation a)) => (a0 -> b) -> Flip Validation a (u a0) -> Flip Validation a (u b) Source # (<-|-|---) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Validation a)) => (a0 -> b) -> Flip Validation a (u a0) -> Flip Validation a (u b) Source # (<-|-|----) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Validation a)) => (a0 -> b) -> Flip Validation a (u a0) -> Flip Validation a (u b) Source # (<-|-|-----) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Validation a)) => (a0 -> b) -> Flip Validation a (u a0) -> Flip Validation a (u b) Source # (<-|-|------) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Validation a)) => (a0 -> b) -> Flip Validation a (u a0) -> Flip Validation a (u b) Source # (<-|-|-------) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Validation a)) => (a0 -> b) -> Flip Validation a (u a0) -> Flip Validation a (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip Validation a)) => (a0 -> b) -> Flip Validation a (u (v a0)) -> Flip Validation a (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip (Tagged :: Type -> Type -> Type) a) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Tagged Methods (<-|-) :: (a0 -> b) -> Flip Tagged a a0 -> Flip Tagged a b Source # (<-|--) :: (a0 -> b) -> Flip Tagged a a0 -> Flip Tagged a b Source # (<-|---) :: (a0 -> b) -> Flip Tagged a a0 -> Flip Tagged a b Source # (<-|----) :: (a0 -> b) -> Flip Tagged a a0 -> Flip Tagged a b Source # (<-|-----) :: (a0 -> b) -> Flip Tagged a a0 -> Flip Tagged a b Source # (<-|------) :: (a0 -> b) -> Flip Tagged a a0 -> Flip Tagged a b Source # (<-|-------) :: (a0 -> b) -> Flip Tagged a a0 -> Flip Tagged a b Source # (<-|--------) :: (a0 -> b) -> Flip Tagged a a0 -> Flip Tagged a b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Tagged a)) => (a0 -> b) -> Flip Tagged a (u a0) -> Flip Tagged a (u b) Source # (<-|-|--) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Tagged a)) => (a0 -> b) -> Flip Tagged a (u a0) -> Flip Tagged a (u b) Source # (<-|-|---) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Tagged a)) => (a0 -> b) -> Flip Tagged a (u a0) -> Flip Tagged a (u b) Source # (<-|-|----) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Tagged a)) => (a0 -> b) -> Flip Tagged a (u a0) -> Flip Tagged a (u b) Source # (<-|-|-----) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Tagged a)) => (a0 -> b) -> Flip Tagged a (u a0) -> Flip Tagged a (u b) Source # (<-|-|------) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Tagged a)) => (a0 -> b) -> Flip Tagged a (u a0) -> Flip Tagged a (u b) Source # (<-|-|-------) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Tagged a)) => (a0 -> b) -> Flip Tagged a (u a0) -> Flip Tagged a (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip Tagged a)) => (a0 -> b) -> Flip Tagged a (u (v a0)) -> Flip Tagged a (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip Conclusion a) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion Methods (<-|-) :: (a0 -> b) -> Flip Conclusion a a0 -> Flip Conclusion a b Source # (<-|--) :: (a0 -> b) -> Flip Conclusion a a0 -> Flip Conclusion a b Source # (<-|---) :: (a0 -> b) -> Flip Conclusion a a0 -> Flip Conclusion a b Source # (<-|----) :: (a0 -> b) -> Flip Conclusion a a0 -> Flip Conclusion a b Source # (<-|-----) :: (a0 -> b) -> Flip Conclusion a a0 -> Flip Conclusion a b Source # (<-|------) :: (a0 -> b) -> Flip Conclusion a a0 -> Flip Conclusion a b Source # (<-|-------) :: (a0 -> b) -> Flip Conclusion a a0 -> Flip Conclusion a b Source # (<-|--------) :: (a0 -> b) -> Flip Conclusion a a0 -> Flip Conclusion a b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Conclusion a)) => (a0 -> b) -> Flip Conclusion a (u a0) -> Flip Conclusion a (u b) Source # (<-|-|--) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Conclusion a)) => (a0 -> b) -> Flip Conclusion a (u a0) -> Flip Conclusion a (u b) Source # (<-|-|---) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Conclusion a)) => (a0 -> b) -> Flip Conclusion a (u a0) -> Flip Conclusion a (u b) Source # (<-|-|----) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Conclusion a)) => (a0 -> b) -> Flip Conclusion a (u a0) -> Flip Conclusion a (u b) Source # (<-|-|-----) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Conclusion a)) => (a0 -> b) -> Flip Conclusion a (u a0) -> Flip Conclusion a (u b) Source # (<-|-|------) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Conclusion a)) => (a0 -> b) -> Flip Conclusion a (u a0) -> Flip Conclusion a (u b) Source # (<-|-|-------) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Conclusion a)) => (a0 -> b) -> Flip Conclusion a (u a0) -> Flip Conclusion a (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip Conclusion a)) => (a0 -> b) -> Flip Conclusion a (u (v a0)) -> Flip Conclusion a (u (v b)) Source # | |
Contravariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip Provision a) Source # | |
Defined in Pandora.Paradigm.Inventory.Some.Provision Methods (>-|-) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source # (>-|--) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source # (>-|---) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source # (>-|----) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source # (>-|-----) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source # (>-|------) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source # (>-|-------) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source # (>-|--------) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source # (>-|-|-) :: (Contravariant (->) (Betwixt (->) (->)) u, Contravariant (Betwixt (->) (->)) (->) (Flip Provision a)) => (a0 -> b) -> Flip Provision a (u a0) -> Flip Provision a (u b) Source # | |
Contravariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip Imprint a) Source # | |
Defined in Pandora.Paradigm.Inventory.Some.Imprint Methods (>-|-) :: (a0 -> b) -> Flip Imprint a b -> Flip Imprint a a0 Source # (>-|--) :: (a0 -> b) -> Flip Imprint a b -> Flip Imprint a a0 Source # (>-|---) :: (a0 -> b) -> Flip Imprint a b -> Flip Imprint a a0 Source # (>-|----) :: (a0 -> b) -> Flip Imprint a b -> Flip Imprint a a0 Source # (>-|-----) :: (a0 -> b) -> Flip Imprint a b -> Flip Imprint a a0 Source # (>-|------) :: (a0 -> b) -> Flip Imprint a b -> Flip Imprint a a0 Source # (>-|-------) :: (a0 -> b) -> Flip Imprint a b -> Flip Imprint a a0 Source # (>-|--------) :: (a0 -> b) -> Flip Imprint a b -> Flip Imprint a a0 Source # (>-|-|-) :: (Contravariant (->) (Betwixt (->) (->)) u, Contravariant (Betwixt (->) (->)) (->) (Flip Imprint a)) => (a0 -> b) -> Flip Imprint a (u a0) -> Flip Imprint a (u b) Source # | |
Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip (:*:) s) ((->) s :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary Methods (-|) :: (Flip (:*:) s a -> b) -> a -> (s -> b) Source # (|-) :: (a -> (s -> b)) -> Flip (:*:) s a -> b Source # (|--------) :: (a -> (s -> b)) -> Flip (:*:) s a -> b Source # (|-------) :: (a -> (s -> b)) -> Flip (:*:) s a -> b Source # (|------) :: (a -> (s -> b)) -> Flip (:*:) s a -> b Source # (|-----) :: (a -> (s -> b)) -> Flip (:*:) s a -> b Source # (|----) :: (a -> (s -> b)) -> Flip (:*:) s a -> b Source # (|---) :: (a -> (s -> b)) -> Flip (:*:) s a -> b Source # (|--) :: (a -> (s -> b)) -> Flip (:*:) s a -> b Source # (--------|) :: (Flip (:*:) s a -> b) -> a -> (s -> b) Source # (-------|) :: (Flip (:*:) s a -> b) -> a -> (s -> b) Source # (------|) :: (Flip (:*:) s a -> b) -> a -> (s -> b) Source # (-----|) :: (Flip (:*:) s a -> b) -> a -> (s -> b) Source # (----|) :: (Flip (:*:) s a -> b) -> a -> (s -> b) Source # | |
type Morphing ('Into (Flip Conclusion e) :: Morph (Type -> Type)) Maybe Source # | |
Defined in Pandora.Paradigm.Structure type Morphing ('Into (Flip Conclusion e) :: Morph (Type -> Type)) Maybe = ((->) e :: Type -> Type) <:.> Flip Conclusion e | |
type Morphing ('Into ('Here Maybe :: Wedge (Type -> Type) a1) :: Morph (Wedge (Type -> Type) a1)) (Flip Wedge a2) Source # | |
type Morphing ('Into ('That Maybe :: These (Type -> Type) a1) :: Morph (These (Type -> Type) a1)) (Flip These a2) Source # | |
type Primary (Flip v a) e Source # | |
Defined in Pandora.Core.Interpreted | |
type Substance ('Left_ :: a1 -> Wye a1) (Flip (:*:) a2) Source # | |