Pandora.Paradigm.Inventory.Some.Provision
newtype Provision e a Source #
Constructors
Defined in Pandora.Paradigm.Inventory.Some.Provision
Methods
unit :: Proxy (:*:) -> (Unit (:*:) --> a) --> Provision e a Source #
mult :: forall (a :: k) (b :: k). (Provision e a :*: Provision e b) --> Provision e (a :*: b) Source #
Associated Types
type Getting Provision e r Source #
get :: Getting Provision e r Source #
(=<<) :: (a -> Provision e b) -> Provision e a -> Provision e b Source #
(==<<) :: (a -> Provision e b) -> Provision e a -> Provision e b Source #
(===<<) :: (a -> Provision e b) -> Provision e a -> Provision e b Source #
(====<<) :: (a -> Provision e b) -> Provision e a -> Provision e b Source #
(=====<<) :: (a -> Provision e b) -> Provision e a -> Provision e b Source #
(======<<) :: (a -> Provision e b) -> Provision e a -> Provision e b Source #
(=======<<) :: (a -> Provision e b) -> Provision e a -> Provision e b Source #
type Primary (Provision e) a Source #
run :: ((->) < Provision e a) < Primary (Provision e) a Source #
unite :: ((->) < Primary (Provision e) a) < Provision e a Source #
(<~~~~~~~~) :: ((->) < Provision e a) < Primary (Provision e) a Source #
(<~~~~~~~) :: ((->) < Provision e a) < Primary (Provision e) a Source #
(<~~~~~~) :: ((->) < Provision e a) < Primary (Provision e) a Source #
(<~~~~~) :: ((->) < Provision e a) < Primary (Provision e) a Source #
(<~~~~) :: ((->) < Provision e a) < Primary (Provision e) a Source #
(<~~~) :: ((->) < Provision e a) < Primary (Provision e) a Source #
(<~~) :: ((->) < Provision e a) < Primary (Provision e) a Source #
(<~) :: ((->) < Provision e a) < Primary (Provision e) a Source #
(=#-) :: (Semigroupoid (->), Interpreted (->) u) => (((->) < Primary (Provision e) a) < Primary u b) -> ((->) < Provision e a) < u b Source #
(-#=) :: (Semigroupoid (->), Interpreted (->) u) => (((->) < Provision e a) < u b) -> ((->) < Primary (Provision e) a) < Primary u b Source #
(<$=#-) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (((->) < Primary (Provision e) a) < Primary u b) -> (j > Provision e a) -> (j > u b) Source #
(-#=$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (((->) < Provision e a) < u b) -> (j > Primary (Provision e) a) -> (j > Primary u b) Source #
wrap :: forall (u :: Type -> Type) a. Pointable u => ((->) < Provision e a) < (Provision e :> u) a Source #
(<-|-) :: (a -> b) -> Provision e a -> Provision e b Source #
(<-|--) :: (a -> b) -> Provision e a -> Provision e b Source #
(<-|---) :: (a -> b) -> Provision e a -> Provision e b Source #
(<-|----) :: (a -> b) -> Provision e a -> Provision e b Source #
(<-|-----) :: (a -> b) -> Provision e a -> Provision e b Source #
(<-|------) :: (a -> b) -> Provision e a -> Provision e b Source #
(<-|-------) :: (a -> b) -> Provision e a -> Provision e b Source #
(<-|--------) :: (a -> b) -> Provision e a -> Provision e b Source #
(<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Provision e)) => (a -> b) -> Provision e (u a) -> Provision e (u b) Source #
(<-|-|--) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Provision e)) => (a -> b) -> Provision e (u a) -> Provision e (u b) Source #
(<-|-|---) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Provision e)) => (a -> b) -> Provision e (u a) -> Provision e (u b) Source #
(<-|-|----) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Provision e)) => (a -> b) -> Provision e (u a) -> Provision e (u b) Source #
(<-|-|-----) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Provision e)) => (a -> b) -> Provision e (u a) -> Provision e (u b) Source #
(<-|-|------) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Provision e)) => (a -> b) -> Provision e (u a) -> Provision e (u b) Source #
(<-|-|-------) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Provision e)) => (a -> b) -> Provision e (u a) -> Provision e (u b) Source #
(<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Provision e)) => (a -> b) -> Provision e (u (v a)) -> Provision e (u (v b)) Source #
(-<<) :: Covariant (->) (->) u => (a -> Provision e b) -> u a -> Provision e (u b) Source #
(--<<) :: Covariant (->) (->) u => (a -> Provision e b) -> u a -> Provision e (u b) Source #
(---<<) :: Covariant (->) (->) u => (a -> Provision e b) -> u a -> Provision e (u b) Source #
(----<<) :: Covariant (->) (->) u => (a -> Provision e b) -> u a -> Provision e (u b) Source #
(-----<<) :: Covariant (->) (->) u => (a -> Provision e b) -> u a -> Provision e (u b) Source #
(------<<) :: Covariant (->) (->) u => (a -> Provision e b) -> u a -> Provision e (u b) Source #
(-------<<) :: Covariant (->) (->) u => (a -> Provision e b) -> u a -> Provision e (u b) Source #
Defined in Pandora.Paradigm.Inventory
(-|) :: (Equipment e a -> b) -> a -> Provision e b Source #
(|-) :: (a -> Provision e b) -> Equipment e a -> b Source #
(|--------) :: (a -> Provision e b) -> Equipment e a -> b Source #
(|-------) :: (a -> Provision e b) -> Equipment e a -> b Source #
(|------) :: (a -> Provision e b) -> Equipment e a -> b Source #
(|-----) :: (a -> Provision e b) -> Equipment e a -> b Source #
(|----) :: (a -> Provision e b) -> Equipment e a -> b Source #
(|---) :: (a -> Provision e b) -> Equipment e a -> b Source #
(|--) :: (a -> Provision e b) -> Equipment e a -> b Source #
(--------|) :: (Equipment e a -> b) -> a -> Provision e b Source #
(-------|) :: (Equipment e a -> b) -> a -> Provision e b Source #
(------|) :: (Equipment e a -> b) -> a -> Provision e b Source #
(-----|) :: (Equipment e a -> b) -> a -> Provision e b Source #
(----|) :: (Equipment e a -> b) -> a -> Provision e b Source #
(---|) :: (Equipment e a -> b) -> a -> Provision e b Source #
(--|) :: (Equipment e a -> b) -> a -> Provision e b Source #
(>-|-) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source #
(>-|--) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source #
(>-|---) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source #
(>-|----) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source #
(>-|-----) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source #
(>-|------) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source #
(>-|-------) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source #
(>-|--------) :: (a0 -> b) -> Flip Provision a b -> Flip Provision a a0 Source #
(>-|-|-) :: (Contravariant (->) (Betwixt (->) (->)) u, Contravariant (Betwixt (->) (->)) (->) (Flip Provision a)) => (a0 -> b) -> Flip Provision a (u a0) -> Flip Provision a (u b) Source #
type Provided e t = Adaptable t (->) (Provision e) Source #
provided :: Provided e t => t e Source #